Skip to main content
Log in

Stress-Relaxation and CRE Behavior of Multi-Layer Silk Fibroin Yarns as a Scaffold in Tendon and Ligament Tissue Engineering

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Tendon and ligament tissue injuries are one the most common body injuries. Engineered tissues are expected to have similar features and biomechanical variable factors, such as mechanical properties, as well as a viscoelastic behavior like native tissues. The aim of this study was to investigate the mechanical properties and stress-relaxation behavior of silk yarns as the primary material in designing different types of tendons and ligaments tissue scaffolds. For this purpose, multilayer silk yarns were prepared experimentally by changing the number of twists and layers. Then, linear and nonlinear standard solid CRE and stress-relaxation models were selected and simulated considering the physical and physiological properties of the desired tissue. As a general conclusion, the CRE curve shape and details were similar to the actual tendon and ligament CRE curve shape with increasing the number of twists and layers. The results also showed that the force in specific time tended to decrease; as well, there was the reduction of stress in the early stages of the CRE test because of the increase in the number of twists and layers. Also, the stress-relaxation analysis showed that by increasing the number of twists and layers, the absolute initial discharge curve slope of the stress and maximum discharge level was decreased due to increase in the elasticity of the samples. Comparisons of linear and nonlinear CRE model showed no statistically significant difference. So, the linear model was selected as the simpler one with less computation and complexity. Finally, there was a good agreement between the model and experimental results for CRE and stress-relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. H. Goh, H. W. Ouyang, S. H. Teoh, C. K. C. Chan, and E. H. Lee, Tissue Eng., 9, 31 (2003).

    Article  Google Scholar 

  2. C. K. Kuo, J. E. Marturano, and R. S. Tuan, Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology, 2, 20 (2010).

    Google Scholar 

  3. S. Sahoo, S. L. Toh, and J. C. H. Goh, Biomaterials, 31, 2990 (2010).

    Article  PubMed  CAS  Google Scholar 

  4. S. J. Kew, J. H. Gwynne, D. Enea, M. Aburud, A. Pandit, D. Zeugolis, R. A. Brooks, N. Rushton, S. M. Best, and R. E. Cameron, Acta Biomater, 7, 3237 (2011).

    Article  PubMed  CAS  Google Scholar 

  5. A. C. Vieira, R. M. Guedes, and A. T. Marques, J. Biomech, 42, 2421 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. V. B. Duthon, C. Barea, S. Abrassart, J. H. Fasel, D. Fritschy, and J. Ménétrey, Knee Surg Sports Traumatol Arthrosc, 14, 204 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Z. Ge, F. Yang, J. C. H. Goh, S. Ramakrishna, and E. H. Lee, J. Biomed. Mater. Res. Part A, 77A, 639 (2006).

    Article  CAS  Google Scholar 

  8. S. E. Kim, J. G. Kim, and K. Park, Tissue Eng. Regen. Med., 16, 467 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. D. M. Doroski, K. S. Brink, and J. S. Temenoff, Biomaterials, 28, 189 (2007).

    Article  Google Scholar 

  10. T. W. Lin, L. Cardenas, and J. Soslowsky, J. Biomech, 37, 865 (2004).

    Article  PubMed  Google Scholar 

  11. A. Sensini and L. Cristofolini, Materials, 11, 1963 (2018).

    Article  PubMed Central  Google Scholar 

  12. Y. Liu, H. S. Ramanth, and D. Wang, Trends Biotechnol., 26, 201 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. J. H. C. Wang, J. Biomech, 39, 1563 (2006).

    Article  PubMed  Google Scholar 

  14. F. Alshomer, C. Chaves, and D. M. Kalaskar, J. Mater., 2018, 1 (2018).

    Google Scholar 

  15. S. L. Y. Woo, S. D. Abramowitch, R. Kilger, and R. Liang, J. Biomech., 39, 1 (2006).

    Article  PubMed  Google Scholar 

  16. D. A. Brennan, A. A. Conte, G. Kanski, S. Turkula, X. Hu, M. T. Kleiner, and V. Beachley, Adv. Healthcare Mater, 7, 1701277 (2018).

    Article  Google Scholar 

  17. R. Puxkandl, I. Zizak, O. Paris, J. Keckes, W. Tesch, S. Bernstor, P. Purslow, and P. Fratzl, Philos. Trans. R. Soc, 357, 191 (2002).

    Article  CAS  Google Scholar 

  18. P. P. Purslow, T. J. Wess, and D. W. Hukins, J. Exp. Biol, 201, 135 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. R. J. Minns and D. S. Jackson, J. Biomech, 6, 153 (1973).

    Article  PubMed  CAS  Google Scholar 

  20. D. Chimich, N. Shrive, C. Frank, L. Marchuk, and R. Bray, J. Biomech., 25, 831 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. D. M. Elliott, P. S. Robinson, J. A. Gimbel, J. J. Sarver, J. A. Abboud, R. V. Lozzo, and L. J. Soslowsky, Ann. Biomed. Eng., 31, 599 (2003).

    Article  PubMed  Google Scholar 

  22. H. S. Gupta, J. Seto, S. Krauss, P. Boesecke, and H. R. C. Screen, J. Struct. Biol., 169, 183 (2010).

    Article  PubMed  CAS  Google Scholar 

  23. Y. C. Fung, “Biomechanics: Mechanical Properties of Living Tissues”, 2nd ed., Springer-Verlag, New York, 1993.

    Book  Google Scholar 

  24. G. M. Thornton, C. B. Frank, and N. G. Shrive, J. Rheol., 45, 493 (2001).

    Article  CAS  Google Scholar 

  25. P. Provenzano, R. Lakes, T. Keenan, and R. Vanderby Jr, Ann. Biomed. Eng., 29, 908 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. G. M. Thornton, A. Oliynyk, C. B. Frank, and N. G. Shrive, J. Orthop. Res., 15, 652 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. R. S. Lakes and R. Vanderby Jr, J. Biomech. Eng., 121, 612 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. P. P. Provenzano, R. S. Lakes, D. T. Corr, and R. Vanderby Jr, Biomech. Model. Mechanobiol., 1, 45 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 12, 1197 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Eng., 11, 101 (2005).

    Article  PubMed  Google Scholar 

  31. L. A. Smith and P. X. Ma, Colloids and Surfaces B: Biointerfaces, 39, 125 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. L. S. Nair and C. T. Laurencin, Adv. Biochem. Engin/Biotechnol., 102, 47 (2006).

    CAS  Google Scholar 

  33. A. Sensini, C. Gualandi, M. L. Focarete, J. Belcari, A. Zucchelli, L. Boyle, G. C. Reilly, A. P. Kao, G. Tozzi, and L. Cristofolini, Biofabrication, 11, 035026 (2019).

    Article  PubMed  CAS  Google Scholar 

  34. J. Hahn, G. Schulze-Tanzil, M. Schröpfer, M. Meyer, C. Gögele, M. Hoyer, A. Spickenheuer, G. Heinrich, and A. Breier, Int. J. Mol. Sci., 20, 4655 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  35. E. Karamuk, J. Mayer, and G. Raeber, Compos. Sci. Technol., 64, 885 (2004).

    Article  CAS  Google Scholar 

  36. W. L. Lim, L. L. Liau, M. H. Ng, S. R. Chowdhury, and J. X. Law, Tissue Eng. Regen. Med., 26, 549 (2019).

    Article  Google Scholar 

  37. E. Y. Jiao, C. Li, L. Liu, F. Wang, X. Liu, J. Mao, and L. Wang, Biomater. Sci., doi: https://doi.org/10.1039/D0BM00157K (2020).

  38. E. Naghashzargar, S. Farè, V. Catto, S. Bertoldi, D. Semnani, S. Karbasi, and M. C. Tanzi, J. Appl. Biomater. Funct. Mater., 13, e156 (2015).

    PubMed  CAS  Google Scholar 

  39. Y. Wang, H. J. Kim, G. V. Novakovic, and D. L. Kaplan, Biomaterials, 27, 6064 (2006).

    Article  PubMed  CAS  Google Scholar 

  40. A. Khosravi, L. Ghasemi-Mobarakeh, H. Mollahosseini, F. Ajalloueian, M. M. Rad, M. R. Norouzi, M. S. Jokandan, A. Khoddami, and I. S. Chronakis, J. Appl. Polym. Sci., 135, 46684 (2018).

    Article  Google Scholar 

  41. G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan, Biomaterials, 23, 4131 (2022).

    Article  Google Scholar 

  42. R. L. Horan, A. L. Collette, C. Lee, K. Antle, J. Chen, and G. H. Altman, J. Biomech, 39, 2232 (2006).

    Article  PubMed  Google Scholar 

  43. D. Jao, X. Mou, and X. Hu, J. Funct. Biomater, 7, 22 (2016).

    Article  PubMed Central  Google Scholar 

  44. L. Vangheluwe and P. Kiekens, J. Text. Inst., 87, 296 (1996).

    Article  CAS  Google Scholar 

  45. R. Sopakayang and R. De Vita, Med. Eng. Phys., 33, 1056 (2011).

    Article  PubMed  Google Scholar 

  46. G. Li, Y. Li, G. Chen, J. He, Y. Han, X. Wang, and D. L. Kaplan, Adv. Healthcare Mater., 4, 1134 (2015).

    Article  CAS  Google Scholar 

  47. E. Naghashzargar, D. Semnani, and S. Karbasi, J. Eng. Fiber. Fabr., 10, 94 (2015).

    Google Scholar 

  48. S. Khavari and M. Ghane, Fiber. Polym., 18, 190 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Iran National Science Foundation (INSF) because of their financial support [grant number 97011747].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Naghashzargar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghashzargar, E., Moezzi, M. & Manafi, S. Stress-Relaxation and CRE Behavior of Multi-Layer Silk Fibroin Yarns as a Scaffold in Tendon and Ligament Tissue Engineering. Fibers Polym 22, 3035–3044 (2021). https://doi.org/10.1007/s12221-021-0409-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0409-z

Keywords

Navigation