Skip to main content
Log in

3D Quantitative Light-intensity Dispersion Index of Polymer Nanocomposites Based on Optical Microscopy

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

There is a great demand for a dispersion evaluation method that can be applied even when a nano-sized filler is incorporated, that can evaluate a three-dimensional (3D) quantitative dispersion of a composite material, and that is not expensive and time consuming. Here, we proposed light-intensity dispersion index (LDI) to quantitatively evaluate the dispersion based on the light scattering distribution on divided optical microscopy (OM) images. Difference in the light-intensity is determined by the dispersion and agglomeration of the filler in the polymer matrix; therefore, the smaller the distribution and the number of peaks of light-intensity, the more uniform the dispersion. The reliability of the developed LDI was improved by introducing an agglomeration size weighting factor. Furthermore, the validity of the LDI was also verified in comparison with the experimental results. In conclusion, we have successfully developed a method for the 3D quantitative dispersion evaluation of nanocomposites with minimal cost and time consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, Compos. Part A: Appl. Sci. Manuf., 41, 1345 (2010).

    Article  Google Scholar 

  2. H. S. Kim, J. H. Kim, W. Y. Kim, H. S. Lee, S. Y. Kim, and M.-S. Khil, Carbon, 119, 40 (2017).

    Article  Google Scholar 

  3. A. I. Zhbanov, E. G. Pogorelov, and Y. C. Chang, ACS Nano, 4, 5937 (2010).

    Article  CAS  Google Scholar 

  4. K. Kiani, Compos. Part B: Eng., 73, 72 (2015).

    Article  CAS  Google Scholar 

  5. S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, and C. R. Park, Carbon, 50, 3 (2012).

    Article  CAS  Google Scholar 

  6. M. Rahmat and P. Hubert, Compos. Sci. Technol., 72, 72 (2011).

    Article  CAS  Google Scholar 

  7. Y. J. Noh, H. I. Joh, J. Yu, S. H. Hwang, S. Lee, C. H. Lee, S. Y. Kim, and J. R. Youn, Sci. Rep., 5, 9141 (2015).

    Article  Google Scholar 

  8. S. Y. Kim, Y. J. Noh, and J. Yu, Compos. Sci. Technol., 101, 79 (2014).

    Article  CAS  Google Scholar 

  9. J.-U. Jang, H. S. Lee, J. W. Kim, S. Y. Kim, S. H. Kim, I. Hwang, B. J. Kang, and M. K. Kang, Chem. Eng. J., 373, 251 (2019).

    Article  CAS  Google Scholar 

  10. L. Liu and J. C. Grunlan, Adv. Funct. Mater., 17, 2343 (2007).

    Article  CAS  Google Scholar 

  11. B. J. Yang, J.-U. Jang, S.-H. Eem, and S. Y. Kim, Compos. Part A: Appl. Sci. Manuf., 92, 108 (2017).

    Article  CAS  Google Scholar 

  12. M. Park, H. Lee, J.-U. Jang, J. H. Park, C. H. Kim, S. Y. Kim, and J. Kim, Compos. Sci. Technol., 177, 96 (2019).

    Article  CAS  Google Scholar 

  13. H. S. Kim, J.-U. Jang, J. Yu, and S. Y. Kim, Compos. Part B: Eng., 79, 505 (2015).

    Article  CAS  Google Scholar 

  14. H. S. Khare and D. L. Burris, Polymer, 51, 719 (2010).

    Article  CAS  Google Scholar 

  15. T. Glaskova, M. Zarrelli, A. Borisova, K. Timchenko, A. Aniskevich, and M. Giordano, Compos. Sci. Technol., 71, 1543 (2011).

    Article  CAS  Google Scholar 

  16. S. K. Basu, A. Tewari, P. D. Fasulo, and W. R. Rodgers, Appl. Phys. Lett., 91, 053105 (2007).

    Article  Google Scholar 

  17. Z. P. Luo and J. H. Koo, Polymer, 49, 1841 (2008).

    Article  CAS  Google Scholar 

  18. Z. P. Luo and J. H. Koo, Mater. Lett., 62, 3493 (2008).

    Article  CAS  Google Scholar 

  19. W. Guan, S. Wang, C. Lu, and B. Z. Tang, Nature Commu., 7, 11811 (2016).

    Article  CAS  Google Scholar 

  20. O. Peters, S. F. Busch, B. M. Fischer, and M. Koch, J. Infrared, Millimeter, Terahertz Waves, 33, 1221 (2012).

    Article  CAS  Google Scholar 

  21. I. H. Sul, J. R. Youn, and Y. S. Song, Carbon, 49, 1473 (2011).

    Article  CAS  Google Scholar 

  22. J. Liu, Y. Gao, D. Cao, L. Zhang, and Z. Guo, Langmuir, 27, 7926 (2011).

    Article  CAS  Google Scholar 

  23. H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, and H. Zhang, ACS Nano, 7, 10344 (2013).

    Article  CAS  Google Scholar 

  24. J. P. Dunkers, R. S. Parnas, C. G. Zimba, R. C. Peterson, K. M. Flynn, J. G. Fujimoto, and B. E. Bouma, Compos. Part A: Appl. Sci. Manuf., 30, 139 (1999).

    Article  Google Scholar 

  25. B. Krause, P. Pötschke, and L. Häußler, Compos. Sci. Technol., 69, 1505 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Fundamental R&D Program for Technology of World Premier Materials funded by the Ministry of Trade, Industry, and Energy, Republic of Korea. We acknowledge the financial support from a Korea Institute of Science and Technology internal project. This research was also supported by Basic Science Research Program (2017R1C1B5077037) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education and the Ministry of Trade, Industry & Energy (MOTIE, Korea) under Industrial Technology Innovation Program. No. (10082586).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaewoo Kim or Seong Yun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Jang, Ju., Oh, J. et al. 3D Quantitative Light-intensity Dispersion Index of Polymer Nanocomposites Based on Optical Microscopy. Fibers Polym 22, 764–771 (2021). https://doi.org/10.1007/s12221-021-0351-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0351-0

Keywords

Navigation