Skip to main content
Log in

Impact Behavior of Carbon Fiber/Epoxy Composites and Fiber Metal Laminates with Open Holes

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper describes an experimental investigation performed to evaluate the low-velocity impact behavior of prepreg-based carbon fiber reinforced polymers (CFRPs) and fiber metal laminates (FMLs) with and without open holes subjected to different impact energies. The laminates were made of carbon fiber/epoxy prepregs and aluminum layers and manufactured by using autoclave. The impact responses of these laminates were experimentally obtained using a drop-weight tower at impact energies of 15, 20 and 30 J. After testing, the impact damage area of tested specimens was quantified from C-scan ultrasonic technique. In addition, an X-ray tomography analysis was performed to assess the through-thickness distribution of damage in FMLs with and without open holes. The results showed that the woven FMLs exhibit the highest impact peak force compared to that of CFRP plates due to the presence of aluminum layers, which induce a higher deformation capability to the laminates. The presence of open holes in laminates tends to augment their damage extension and decreases their impact peak force due to the local stress concentration effect. Nevertheless, it was observed by C-scan ultrasonic images that the aluminum layers reduce the extent of delamination of laminates during the impact event. Postimpact evaluation using X-ray computed tomography showed that impact causes a severe damage to the laminates around their impact point and confirmed that matrix cracking and delamination are the principal damage mechanisms induced on the through-thickness direction of the FML plates. In specific, the results confirm that the aluminum layers provide good impact properties and damage resistance when they are added to the CFRPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Soutis, Mater. Sci. Eng. A, 412, 171 (2005).

    Article  Google Scholar 

  2. D. Ga, “Composite Materials: Design and Applications”, 3rd ed., CRC Press, Boca Raton, 2015.

    Google Scholar 

  3. T. Sinmazçelik, E. Avcu, M. Ö. Bora, and O. Çoban, Mater. Des., 32, 3671 (2011).

    Article  Google Scholar 

  4. N. Asnafi, G. Langstedt, C.-H. Andersson, N. Östergren, and T. Håkansson, Thin-Walled Struct., 36, 289 (2000).

    Article  Google Scholar 

  5. E. C. Botelho, R. A. Silva, L. C. Pardini, and M. C. Rezende, Mater. Res., 9, 247 (2006).

    Article  CAS  Google Scholar 

  6. M. Sadighi, E. C. Alderliesten, and R. Benedictus, Int. J. Impact Eng., 49, 77 (2012).

    Article  Google Scholar 

  7. J. Bieniaś, P. Jakubczak, B. Surowska, and K. Dragan, Arch Civ. Mech. Eng., 15, 925 (2015).

    Article  Google Scholar 

  8. G. B. Chai and P. Manikandan, Compos. Struct., 107, 363 (2014).

    Article  Google Scholar 

  9. N. Tsartsaris, M. Meo, F. Dolce, U. Polimeno, M. Guida, and F. Marulo, J. Compos. Mater., 45, 803 (2011).

    Article  Google Scholar 

  10. X. Li, X. Zhang, Y. Guo, V. P. W. Shim, J. Yang, and G. B. Chai, Int. J. Impact Eng., 114, 32 (2018).

    Article  Google Scholar 

  11. L. Yao, C. Wang, W. He, S. Lu, and D. Xie, Thin-Walled Struct., 145, 106399 (2019).

    Article  Google Scholar 

  12. J. G. Carrillo, N. G. Gonzalez-Canche, E. A. Flores-Johnson, and P. Cortes, Compos. Struct., 220, 708 (2019).

    Article  Google Scholar 

  13. D.-W. Lee, B.-J. Park, S.-Y. Park, C.-H. Choi, and J.-I. Song, Compos. Struct., 189, 61 (2018).

    Article  Google Scholar 

  14. J. Bieniaś and P. Jakubczak, Compos. Struct., 172, 147 (2017).

    Article  Google Scholar 

  15. L. Toubal, M. Karama, and B. Lorrain, Compos. Struct., 68, 31 (2005).

    Article  Google Scholar 

  16. T. Roy and D. Chakraborty, Mater. Des., 29, 124 (2008).

    Article  CAS  Google Scholar 

  17. R. A. M. Santos, P. N. B. Reis, M. J. Santos, and C. A. C. P. Coelho, Compos. Struct., 168, 33 (2017).

    Article  Google Scholar 

  18. P. N. B. Reis, R. A. M. Santos, F. G. A. Silva, and M. F. S. F. de Moura, Fiber. Polym., 19, 2574 (2018).

    Article  Google Scholar 

  19. R. K. Luo, Compos. Sci. Technol., 60, 49 (2000).

    Article  Google Scholar 

  20. A. M. Amaro, P. N. B. Reis, M. F. S. F. de Moura, and M. A. Neto, Compos. Struct., 97, 239 (2013).

    Article  Google Scholar 

  21. N. H. Hadi and H. H. Khaleel, J. Multidiscip. Eng. Sci. Technol., 2, 726 (2015).

    Google Scholar 

  22. E. R. Green, C. J. Morrison, and R. K. Luo, J. Compos. Mater., 34, 502 (2000).

    Article  Google Scholar 

  23. A. M. Amaro, P. N. B. Reis, M. F. S. F. de Moura, and M. A. Neto, Polym. Compos., 39, 2490 (2018).

    Article  CAS  Google Scholar 

  24. C. Rubio-González, E. José-Trujillo, F. Chávez, and A. Ruiz, J. Compos. Mater., 51, 797 (2017).

    Article  Google Scholar 

  25. C. Rubio-González, F. Velasco, and J. Martínez, J. Compos. Mater., 50, 885 (2016).

    Article  Google Scholar 

  26. ASTM D7136, “Standard Test Method for Measuring the Damage Resistance of a Fiber-reinforced Polymer Matrix Composite to a Drop-weight Impact Event”, pp.1–16, ASTM International, West Conshohocken, USA, 2015.

    Google Scholar 

  27. ASTM D2584, “Standard Test Method for Ignition Loss of Cured Reinforced Resins”, pp.1–2, ASTM International, West Conshohocken, USA, 2011.

    Google Scholar 

  28. C. Rubio-González, E. José-Trujillo, J. A. Rodríguez-González, A. Mornas, and A. Talha, Polym. Compos., 41, 2181 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Centro Mexicano de Innovación en Energía Océano” (CEMIE-O). The authors are grateful with M.C. Marco A. Paredes from “Centro Nacional de Tecnologías Aeronáuticas” for his technical assistance with the X-ray computed tomography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rubio-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-González, C., Chávez, F., José-Trujillo, E. et al. Impact Behavior of Carbon Fiber/Epoxy Composites and Fiber Metal Laminates with Open Holes. Fibers Polym 22, 772–785 (2021). https://doi.org/10.1007/s12221-021-0343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0343-0

Keywords

Navigation