Skip to main content
Log in

Photocatalytic Reduction of Hexavalent Chromium Ions from Aqueous Solutions Using Polymeric Microfibers Surface Modified with ZnO Nanoparticles

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this research work, the coaxial electrospinning technique was used for the development of composite membranes based on poly(acrylonitrile-butadiene-styrene)/polyacrylonitrile (ABS/PAN) micrometer fibers loaded with ZnO nanoparticles (NpZnO) in order to evaluate their efficiency in the photoreduction of Cr VI ions in aqueous solutions. The morphological analysis of the fibers was carried out by means of scanning electron microscopy (SEM), the chemical composition of the materials was determined by Fourier transformed infrared spectroscopy (FTIR) with attenuated total reflectance (ATR), the crystallinity of the nanoparticles in the fibrous materials was analyzed by X-ray diffraction (XRD) and the residual Cr VI concentration was measured with the Nesslerizations method. It was demonstrated that by means of the electrospinning technique it is possible to manufacture coaxial fibers based on ABS/PAN with homogeneous morphology with mean diameters of 1.1 µm. Furthermore, through this technique it was possible to obtain ABS/PAN-NpZnO composite coaxial fibers with concentrations of 15, 25 and 30 wt.% of NpZnO, thus favoring the increase in the dose of the photocatalyst. The maximum efficiency of said membrane was obtained with 30 % wt.% of NpZnO with respect to the total solid, allowing the reduction of Cr VI to 81.59 % after 8 h with a substrate concentration of 50 mg/l. Therefore, ABS/PAN-NpZnO fibers are promising candidates for applications related to environmental remediation, such as water regeneration filters, thus partially contributing to the development of sustainable technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bilal and H. M. N. Iqbal, Sci. Total Environ., 670, 555 (2019).

    Article  PubMed  CAS  Google Scholar 

  2. Y. Wu, H. Pang, Y. Liu, X. Wang, S. Yu, D. Fu, J. Chen, and X. Wang, Environ. Pollut., 246, 608 (2019).

    Article  PubMed  CAS  Google Scholar 

  3. K. Grace, V. Jaikumar, P. S. Kumar, and P. S. Sundar, J. Clean. Prod., 228, 580 (2019).

    Article  Google Scholar 

  4. M. Yoshinaga, H. Ninomiya, M. M. A. Al Hossain, M. Sudo, A. A. Akhand, N. Ahsan, M. A. Alim, M. Khalequzzaman, M. Iida, I. Yajima, N. Ohgami, and M. Kato, Chemosphere, 201, 667 (2018).

    Article  PubMed  CAS  Google Scholar 

  5. World Health Organization, “Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum”, Geneva, 2017, https://www.ncbi.nlm.nih.gov/books/NBK442376/ (Accessed March 8, 2021).

  6. J. Zhu, J. Hou, Y. Zhang, M. Tian, T. He, J. Liu, and V. Chen, J. Memb. Sci., 550, 173 (2018).

    Article  CAS  Google Scholar 

  7. Y. Liao, C. H. Loh, M. Tian, R. Wang, and A. G. Fane, Prog. Polym. Sci., 77, 69 (2018).

    Article  CAS  Google Scholar 

  8. A. Nasir, F. Masood, T. Yasin, and A. Hameed, J. Ind. Eng. Chem., 79, 29 (2019).

    Article  CAS  Google Scholar 

  9. M. Bassyouni, M. H. Abdel-Aziz, M. S. Zoromba, S. M. S. Abdel-Hamid, and E. Drioli, J. Ind. Eng. Chem., 73, 19 (2019).

    Article  CAS  Google Scholar 

  10. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, Desalination, 308, 15 (2013).

    Article  CAS  Google Scholar 

  11. S. Tabe, “Nanotechnology for Water Treatment and Purification”, 1st ed., pp.112–144, Springer International Publishing, Switzerland, 2014.

    Google Scholar 

  12. A. Ejraei, M. A. Aroon, and A. Ziarati Saravani, J. Water Process Eng., 28, 45 (2019).

    Article  Google Scholar 

  13. F. Galiano, K. Briceño, T. Marino, A. Molino, K. V. Christensen, and A. Figoli, J. Memb. Sci., 564, 562 (2018).

    Article  CAS  Google Scholar 

  14. D. M. Warsinger, S. Chakraborty, E. W. Tow, M. H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A. M. Mikelonis, A. Achilli, A. Ghassemi, L. P. Padhye, S. A. Snyder, S. Curcio, C. D. Vecitis, H. A. Arafat, and J. H. Lienhard, Prog. Polym. Sci., 81, 209 (2018).

    Article  CAS  Google Scholar 

  15. C. Mbareck, Q. T. Nguyen, O. T. Alaoui, and D. Barillier, J. Hazard. Mater., 171, 93 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. W. Deng, M. Long, Q. Zhou, N. Wen, and W. Deng, J. Colloid Interface Sci., 511, 21 (2018).

    Article  PubMed  CAS  Google Scholar 

  17. S. Yuan, F. Shen, C. K. Chua, and K. Zhou, Prog. Polym. Sci., 91, 141 (2019).

    Article  CAS  Google Scholar 

  18. F. S. Kamelian, S. M. Mousavi, and A. Ahmadpour, Appl. Surf. Sci., 357, 1 (2015).

    Article  Google Scholar 

  19. A. H. Jawad, A. F. M. Alkarkhi, and N. S. A. Mubarak, Desalin. Water Treat., 56, 161 (2015).

    Article  CAS  Google Scholar 

  20. A. H. Jawad, N. S. A. Mubarak, M. A. M. Ishak, K. Ismail, and W. I. Nawawi, J. Taibah Univ. Sci., 10, 352 (2016).

    Article  Google Scholar 

  21. M. Altin Karataş and H. Gökkaya, Def. Technol., 14, 318 (2018).

    Article  Google Scholar 

  22. M. Kotal and A. K. Bhowmick, Prog. Polym. Sci., 51, 127 (2015).

    Article  CAS  Google Scholar 

  23. H. Rodríguez-Tobías, G. Morales, and D. Grande, Mater. Sci. Eng. C, 101, 306 (2019).

    Article  Google Scholar 

  24. A. Bumajdad, A. A. Nazeer, F. Al Sagheer, S. Nahar, and M. I. Zaki, Sci. Rep., 8, 1 (2018).

    Article  CAS  Google Scholar 

  25. S. Koushkbaghi, A. Zakialamdari, M. Pishnamazi, H. F. Ramandi, M. Aliabadi, and M. Irani, Chem. Eng. J., 337, 169 (2018).

    Article  CAS  Google Scholar 

  26. A. H. Jawad, N. S. A. Mubarak, and A. S. Abdulhameed, J. Polym. Environ., 28, 624 (2020).

    Article  CAS  Google Scholar 

  27. J. Liu, Y. Wang, J. Ma, Y. Peng, and A. Wang, J. Alloys Compd., 783, 898 (2019).

    Article  CAS  Google Scholar 

  28. N. D. Tissera, R. N. Wijesena, C. S. Sandaruwan, R. M. de Silva, A. de Alwis, and K. M. N. de Silva, Mater. Chem. Phys., 204, 195 (2018).

    Article  CAS  Google Scholar 

  29. A. P. Shah, S. Jain, V. J. Mokale, and N. G. Shimpi, J. Ind. Eng. Chem., 77, 154 (2019).

    Article  CAS  Google Scholar 

  30. E. Korina, O. Stoilova, N. Manolova, and I. Rashkov, J. Environ. Chem. Eng., 6, 2075 (2018).

    Article  CAS  Google Scholar 

  31. H. Rodríguez-Tobías, G. Morales, A. Ledezma, J. Romero, R. Saldívar, V. Langlois, E. Renard, and D. Grande, J. Mater. Sci., 51, 8593 (2016).

    Article  Google Scholar 

  32. A. Castro-Ruíz, H. Rodríguez-Tobías, G. A. Abraham, G. Rivero, and G. Morales, J. Appl. Polym. Sci., 137, 48429 (2020).

    Article  Google Scholar 

  33. A. Murali, P. K. Sarswat, and M. L. Free, J. Alloys Compd., 843, 155835 (2020).

    Article  CAS  Google Scholar 

  34. F. W. Gilcreas, Am. J. Public Health Nations. Health, 56, 387 (1966).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. G. Madhumitha, J. Fowsiya, N. Gupta, A. Kumar, and M. Singh, J. Phys. Chem. Solids, 127, 43 (2019).

    Article  CAS  Google Scholar 

  36. S. Patel and G. Hota, RSC Adv., 6, 15402 (2016).

    Article  CAS  Google Scholar 

  37. R. Zhao, X. Li, Y. Li, Y. Li, B. Sun, N. Zhang, S. Chao, and C. Wang, J. Colloid Interface Sci., 505, 1018 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. A. Yar, B. Haspulat, T. Östün, V. Eskizeybek, A. Avci, H. Kamis, and S. Achour, RSC Adv., 7, 29806 (2017).

    Article  CAS  Google Scholar 

  39. A. Reghioua, D. Barkat, A. H. Jawad, A. S. Abdulhameed, and M. R. Khan, Sustain. Chem. Pharm., 20, 100379 (2021).

    Article  Google Scholar 

  40. A. Reghioua, D. Barkat, A. H. Jawad, A. S. Abdulhameed, A. A. Al-Kahtani, and Z. A. Alothman, J. Environ. Chem. Eng., 9, 105166 (2021).

    Article  CAS  Google Scholar 

  41. S. Patel, M. Konar, H. Sahoo, and G. Hota, Nanotechnology, 30, 205704 (2019).

    Article  PubMed  Google Scholar 

  42. M. Zarrinkhameh, A. Zendehnam, and S. M. Hosseini, J. Ind. Eng. Chem., 30, 295 (2015).

    Article  CAS  Google Scholar 

  43. D. Kim, K. Jeon, Y. Lee, J. Seo, K. Seo, H. Han, and S. Khan, Prog. Org. Coatings, 74, 435 (2012).

    Article  CAS  Google Scholar 

  44. I. Kim, K. Viswanathan, G. Kasi, K. Sadeghi, S. Thanakkasaranee, and J. Seo, Polymers (Basel), 11, 1427 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  45. A. T. Le, S. Y. Pung, S. Sreekantan, A. Matsuda, and D. P. Huynh, Heliyon, 5, e01440 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. G. Cappelletti, C. L. Bianchi, and S. Ardizzone, Appl. Catal. B Environ., 78, 193 (2008).

    Article  CAS  Google Scholar 

  47. P. Khare, A. Bhati, S. R. Anand, Gunture, and S. K. Sonkar, ACS Omega, 3, 5187 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. N. H. Kera, M. Bhaumik, K. Pillay, S. S. Ray, and A. Maity, J. Colloid Interface Sci., 503, 214 (2017).

    Article  PubMed  CAS  Google Scholar 

  49. M. Dundar, C. Nuhoglu, and Y. Nuhoglu, Environ. Prog. Sustain. Energy, 30, 599 (2011).

    Article  CAS  Google Scholar 

  50. M. Shirzad-Siboni, M. Farrokhi, R. Darvishi Cheshmeh Soltani, A. Khataee, and S. Tajassosi, Ind. Eng. Chem. Res., 53, 1079 (2014).

    Article  CAS  Google Scholar 

  51. D. G. Yu, J. Zhou, N. P. Chatterton, Y. Li, J. Huang, and X. Wang, Int. J. Nanomed., 7, 5725 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CONACyT for providing A. Castro-Ruiz with a M.Sc. grant and financial support for the research stay. They also thank CONICET (PIP0153) and UNMdP for partial financial support and Jesús Cepeda and C. Alvarado-Canché for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Morales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, G., Castro-Ruiz, A., Rodríguez-Tobías, H. et al. Photocatalytic Reduction of Hexavalent Chromium Ions from Aqueous Solutions Using Polymeric Microfibers Surface Modified with ZnO Nanoparticles. Fibers Polym 22, 3271–3280 (2021). https://doi.org/10.1007/s12221-021-0217-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0217-5

Keywords

Navigation