Skip to main content
Log in

A Facile and Controllable Approach for Surface Modification of Wool by Micro-dissolution

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Most modifications of wool focused on its surface due to the existence of the cuticle scales. For instance, chlorination, oxidation and protease treatments were used to break down or remove the scales. However, these modifications usually severely damaged the internal structure of wool. In this paper, a novel approach based on surface micro-dissolution was employed to modify the surface of wool to minimize the internal damage of wool, and improve the surface-related properties of wool. The micro-dissolution system used NaHSO3/urea to dissolve the scale layer of wool. After being micro-dissolved with NaHSO3/urea system, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), and the Allwörden reaction were utilized to characterize the treated wool. Furthermore, felting shrinkage, strength loss and wettability of the treated wool were determined. The results showed that NaHSO3/urea system could dissolve the scale layer from outside to inside. The fluorescence microscopic images further indicated that low concentration of NaHSO3/urea system can dissolve the surface of wool without the serious damage of internal structure. Moreover, the micro-dissolution system can be controlled to dissolve the scale layer on the surface of wool slightly by adjusting the reaction conditions. The presented method is simple, easy to operate, and economical, thereby can open up new directions for the surface modification of wool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, H. Gao, Y. Chen, and D. Guo, Int. J. Adv. Manuf. Technol., 85, 1347 (2016).

    Article  Google Scholar 

  2. M. Chen, M. Li, W. Jiang, and Q. Xu, J. Appl. Phys., 108, 043109 (2010).

    Article  Google Scholar 

  3. T. Fan, R. Hu, Z. Zhao, Y. Liu, and M. Lu, Appl. Surf. Sci., 400, 524 (2017).

    Article  CAS  Google Scholar 

  4. L. Li, T. Fan, R. Hu, Y. Liu, and M. Lu, Cellulose, 24, 1121 (2017).

    Article  CAS  Google Scholar 

  5. M. Lu, L. Li, R. Xie, Z. Zhao, and Z. Mao, Cellulose, 24, 1099 (2017).

    Article  CAS  Google Scholar 

  6. R. Hu, Z. Zhao, J. Zhou, Q. Pu, Q. Dong, Y. Liu, H. Huang, and M. Lu, Cellulose, 24, 5251 (2017).

    Article  CAS  Google Scholar 

  7. M. Brebu and I. Spiridon, J. Anal. Appl. Pyrolysis, 91, 288 (2011).

    Article  CAS  Google Scholar 

  8. J. Fu, J. Su, P. Wang, Y. Yu, Q. Wang, and A. Cavaco-Paulo, Appl. Microbiol. Biotechnol., 99, 10387 (2015).

    Article  CAS  Google Scholar 

  9. M. Schroeder, M. Schweitzer, H. Lenting, and G. Guebitz, Biocatal. Biotransform., 22, 299 (2004).

    Article  CAS  Google Scholar 

  10. J. Shen, E. Smith, M. Chizyuka, and C. Prajapati, Fiber. Polym., 18, 1769 (2017).

    Article  CAS  Google Scholar 

  11. J. M. Cardamone, J. Yao, and A. Nuńez, Text. Res. J., 74, 887 (2004).

    Article  CAS  Google Scholar 

  12. E. Smith and J. Shen, J. Biotechnol., 156, 134 (2011).

    Article  CAS  Google Scholar 

  13. P. J. Wakelyn, Text. Res. J., 42, 67 (1972).

    Article  CAS  Google Scholar 

  14. Q. Wang, G. Jin, X. Fan, X. Zhao, L. Cui, and P. Wang, Appl. Biochem. Biotechnol., 160, 2486 (2010).

    Article  CAS  Google Scholar 

  15. K.-Y. Chan and B. P. Wasserman, Cereal Chem., 70, 22 (1993).

    CAS  Google Scholar 

  16. Y. Zhang, R. Yang, and W. Zhao, J. Agric. Food. Chem., 62, 2745 (2014).

    Article  CAS  Google Scholar 

  17. B. Basu, RSC Adv., 4, 13854 (2014).

    Article  Google Scholar 

  18. S. Ogawa, K. Fujii, K. Kaneyama, and K. Arai, Fiber, 64, 137 (2008).

    Article  CAS  Google Scholar 

  19. J. Bradbury and J. D. Leeder, Aust. J. Biol. Sci., 25, 133 (1972).

    Article  CAS  Google Scholar 

  20. W. Chen, D. Chen, and X. Wang, Text. Res. J., 71, 441 (2001).

    Article  CAS  Google Scholar 

  21. J. Swift and J. Smith, J. Microsc., 204, 9 (2001).

    Article  Google Scholar 

  22. J. Yao, Y. Liu, S. Yang, and J. Liu, J. Eng. Fiber Fabr., 3, 155892500800300205 (2008).

    Google Scholar 

  23. N. Gómez, M. R. Juliá, D. Lewis, and P. Erra, Color. Technol., 111, 281 (2008).

    Google Scholar 

  24. P. Erra, N. Gómez, L. M. Dolcet, M. R. Juliá, D. Lewis, and J. H. Willoughby, Text. Res. J., 67, 397 (1997).

    Article  CAS  Google Scholar 

  25. D. P. Harland, J. P. Caldwell, J. L. Woods, R. J. Walls, and W. G. Bryson, J. Struct. Biol., 173, 29 (2011).

    Article  CAS  Google Scholar 

  26. D. P. Harland, R. J. Walls, J. A. Vernon, J. M. Dyer, J. L. Woods, and F. Bell, J. Struct. Biol., 185, 397 (2014).

    Article  CAS  Google Scholar 

  27. M. J. Richardson and J. H. Johnston, J. Colloid Interface Sci., 310, 425 (2007).

    Article  CAS  Google Scholar 

  28. R. J. Ward, H. A. Willis, G. George, G. B. Guise, R. Denning, D. J. Evans, and R. D. Short, Text. Res. J., 63, 362 (1993).

    Article  CAS  Google Scholar 

  29. A. Khoddami, H. Gong, and G. Ghadimi, Fiber. Polym., 13, 28 (2012).

    Article  CAS  Google Scholar 

  30. B. Tang, J. Wang, S. Xu, T. Afrin, W. Xu, L. Sun, and X. Wang, J. Colloid Interface Sci., 356, 513 (2011).

    Article  CAS  Google Scholar 

  31. G. Ke, W. Yu, W. Xu, W. Cui, and X. Shen, J. Mater. Process. Technol., 207, 125 (2008).

    Article  CAS  Google Scholar 

  32. R. Molina, J. P. Espinös, F. Yubero, P. Erra, and A. R. González-Elipe, Appl. Surf. Sci., 252, 1417 (2005).

    Article  CAS  Google Scholar 

  33. F. Oliveira, M. Fernandes, N. Carneiro, and A. Souto, J. Appl. Polym. Sci., 128, 2638 (2013).

    Article  CAS  Google Scholar 

  34. C. W. Kan, K. Chan, and C. W. M. Yuen, Fiber. Polym., 5, 52 (2004).

    Article  CAS  Google Scholar 

  35. F. Ghahremanzadeh, A. Khoddami, and C. M. Carr, Fiber. Polym., 11, 1170 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51673087, 31771039), the National Key R&D Program of China (2017YFB0309200), Fundamental Research Funds for the Central Universities (JUSRP51717A), the Graduate student innovation project (KYCX17_1452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, N., Wang, Q. et al. A Facile and Controllable Approach for Surface Modification of Wool by Micro-dissolution. Fibers Polym 21, 1229–1237 (2020). https://doi.org/10.1007/s12221-020-9727-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9727-9

Keywords

Navigation