Skip to main content
Log in

Synthesis of Polypropylene and Curauá Fiber Composites: Towards High Performance and Low Price Materials

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The surface of Curauá (Ananas Erectifolius) fibers was successfully modified, characterized and applied as reinforcement on polypropylene composites through two different techniques: in situ polymerization and melt mixture. The best results in terms of mechanical performance were obtained for composites prepared through melt mixture technique with fibers submitted to moderate hydrolysis conditions (H2SO4 10 %, 1 h, 40 °C, Ultrasound 30 min) and further acetylation with the incorporation of compatibilizing agent PPMA as well as for the fiber with further silanization without PPMA. Those fibers caused more than 100 % of elastic module improvement with respect to pristine polymer. Glass transition temperature also was increased with the incorporation of A. Erectifolius fibers as well as degradation temperature. Scanning electron microscopy permitted to verify that most of the mechanical properties is lost because of high ratio of empty spaces (mainly in the case of in situ composites).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Mothé, C. R. De Araujo, and S. H. Wang, J. Therm. Anal. Calorim., 95, 181 (2009).

    Article  Google Scholar 

  2. F. P. D. Lopes, J. Mater. Sci., 43, 489 (2008).

    Article  Google Scholar 

  3. M. Moreira, A. Rodriguez, E. Hage, L. Capparelli, and J. Marconcini, Polym. Compos., 36, 1520 (2015).

    Article  Google Scholar 

  4. C. F. Mota, M. F. V Marques, J. N. Lunz, and S. B. Cordeiro, Macromol. Symp, 319, 99 (2012).

    Article  Google Scholar 

  5. R. P. De Melo, M. F. V. Marques, P. Navard, and N. P. Duque, J. Compos. Mater., 51, 25 (2017).

    Article  Google Scholar 

  6. I. Grafova, M. Kemell, J. Lunz, F. Marques, A. Grafov, and M. Leskela, Chem. Vap. Depos, 17, 58 (2011).

    Article  CAS  Google Scholar 

  7. S. Collins, W. M. Kelly, and D. A. Holden, Macromolecules, 25, 1780 (1992).

    Article  CAS  Google Scholar 

  8. C. De Rosa, F. Auriemma, A. Di Capua, L. Resconi, S. Guidotti, I. Camurati, I. E. Nifant’ev, and I. P. Laishevtsev, J. Am. Chem. Soc, 126, 17040 (2004).

    Article  CAS  Google Scholar 

  9. P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, and A. Usuki, Polymer, 42, 9633 (2001).

    Article  CAS  Google Scholar 

  10. S. M. L. Rosa, S. M. B. Nachtigall, and C. A. Ferreira, Macromol. Res., 17, 8 (2009).

    Article  CAS  Google Scholar 

  11. S. M. Luz, J. Del Tio, G. J. M. Rocha, A. R. Gonçalves, and A. P. Del’Arco, Compos. Part A Appl. Sci. Manuf., 39, 1362 (2008).

    Article  Google Scholar 

  12. M. A. S. Spinacé, C. S. Lambert, K. K. G. Fermoselli, and M. De Paoli, Carbohydr. Polym., 77, 47 (2009).

    Article  Google Scholar 

  13. E. Martuscelli, M. Pracella, and P. Y. Wang, Polymer, 25, 1097 (1984).

    Article  CAS  Google Scholar 

  14. K. Koskela, R. M. Rowell, R. Mahlberg, L. Paajanen, A. Nurmi, and A. Kivisto, Holz als Roh-und Werkstoff, 59, 319 (2001).

    Article  Google Scholar 

  15. M.-Z. Pan, D.-G. Zhou, J. Deng, and S. Zhang, J. Appl. Polym. Sci., 114, 3049 (2009).

    Article  CAS  Google Scholar 

  16. N. Zafeiropoulos, D. Williams, C. Baillie, and F. Matthews, Compos. Part A Appl. Sci. Manuf., 33, 1083 (2002).

    Article  Google Scholar 

  17. H. S. Yang, M. P. Wolcott, H. S. Kim, S. Kim, and H. J. Kim, Compos. Struct., 79, 369 (2007).

    Article  Google Scholar 

  18. A. Karmarkar, S. S. Chauhan, J. M. Modak, and M. Chanda, Part A Appl. Sci. Manuf., 38, 227 (2007).

    Article  Google Scholar 

  19. A. Ashori, Wood, Bioresour. Technol., 99, 4661 (2008).

    Article  CAS  Google Scholar 

  20. L. Dányádi, T. Janecska, Z. Szabó, G. Nagy, J. Móczó, and B. Pukánszky, Compos. Sci. Technol., 67, 2838 (2007).

    Article  Google Scholar 

  21. A. El Oudiani, Y. Chaabouni, S. Msahli, and F. Sakli, Carbohydr. Polym., 86, 1221 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento dePessoal de Nível Superior — Brazil (CAPES) — Finance Code 001. We would like to thank CNPQ and FAPERJ for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria De Fátima Vieira Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, J.J.R., Lunz, J., Amantes, B.D.P. et al. Synthesis of Polypropylene and Curauá Fiber Composites: Towards High Performance and Low Price Materials. Fibers Polym 21, 1316–1330 (2020). https://doi.org/10.1007/s12221-020-9195-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9195-2

Keywords

Navigation