Skip to main content

Advertisement

Log in

Polymer composites of biobased aliphatic polyesters with natural abundant fibers that improve the mechanical properties

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • Plastic flow and its management
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Biobased composite films have been prepared by solvent cast and hot press methods using saturated aliphatic polyester (expressed as HP1) with different loading (i.e., 1 and 3 wt %) of CNF, citrus fiber, and dextrin. HP1 was prepared by acyclic diene metathesis (ADMET) polymerization of biobased α,ω-dienes of bis(undec-10-enoate) with isosorbide (M1) using a RuCl2(IMesH2)(CH-2–OiPr–C6H4) (HG2, IMesH2 = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) catalyst and subsequent tandem hydrogenation (H2 2.0 MPa, 50 °C, 12 h). The appearance (morphology, transmittance, haze), the thermal properties (including degree of crystallinity by DSC thermograms), and the tensile properties of the fabricated films were evaluated to explore effect of the additives. The prepared composite films by solvent cast and hot press methods were transparent and showed enhancement of tensile strength. The citrus fiber, upcycled product made from the waste residue of squeezed citrus juice and oil, among the other additives showed the highest tensile strength and toughness values irrespective of the molecular weight of the employed polyester or the used fabrication method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stempfle F, Ortmann P, Mecking S (2016) Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem Rev 116:4597–4641. https://doi.org/10.1021/acs.chemrev.5b00705

    Article  CAS  PubMed  Google Scholar 

  2. Nomura K, Awang NWB (2021) Synthesis of bio-based aliphatic polyesters from plant oils by efficient molecular catalysis: a selected survey from recent reports. ACS Sustain Chem Eng 9:5486–5505. https://doi.org/10.1021/acssuschemeng.1c00493

    Article  CAS  Google Scholar 

  3. Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802. https://doi.org/10.1039/B703294C

    Article  CAS  PubMed  Google Scholar 

  4. Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909. https://doi.org/10.1039/C0GC00264J

    Article  CAS  Google Scholar 

  5. Hillmyer MA, Tolman WB (2014) Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc Chem Res 47:2390–2396. https://doi.org/10.1021/ar500121d

    Article  CAS  PubMed  Google Scholar 

  6. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50:3854–3871. https://doi.org/10.1002/anie.201002767

    Article  CAS  Google Scholar 

  7. Gandini A, Lacerda TM (2019) Monomers and polymers from chemically modified plant oils and their fatty acids. Polymers from Plant Oils, 2nd edn. John Wiley & Sons Inc, Hoboken, NJ, USA and Scrivener Publishing LLC, Beverly, MA, USA, pp 33–82

    Google Scholar 

  8. Barbiroli G, Lorenzetti C, Berti C, Fiorini M, Manaresi P (2003) Synthesis of polyesters by condensation polymerization, selected references 8–17. Eur Polym J 39:655–661. https://doi.org/10.1016/S0014-3057(02)00280-X

    Article  CAS  Google Scholar 

  9. Quinzler D, Mecking S (2010) Linear semicrystalline polyesters from fatty acids by complete feedstock molecule utilization. Angew Chem Int Ed 49:4306–4308. https://doi.org/10.1002/anie.201001510

    Article  CAS  Google Scholar 

  10. Stempfle F, Quinzler D, Heckler I, Mecking S (2011) Long-chain linear C19 and C23 monomers and polycondensates from unsaturated fatty acid esters. Macromolecules 44:4159–4166. https://doi.org/10.1021/ma200627e

    Article  ADS  CAS  Google Scholar 

  11. Trzaskowski J, Quinzler D, Bährle C, Mecking S (2011) Aliphatic long-chain C20 polyesters from olefin metathesis. Macromol Rapid Commun 32:1352–1356. https://doi.org/10.1002/marc.201100319

    Article  CAS  PubMed  Google Scholar 

  12. Stempfle F, Ortmann P, Mecking S (2013) Which polyesters can mimic polyethylene? Macromol Rapid Commun 34:47–50. https://doi.org/10.1002/marc.201200611

    Article  CAS  PubMed  Google Scholar 

  13. Roumanet P-J, Laflèche F, Jarroux N, Raoul Y, Claude S, Guégan P (2013) Novel aliphatic polyesters from an oleic acid based monomer. Synthesis, epoxidation, cross-linking and biodegradation. Eur Polym J 49:813–822. https://doi.org/10.1016/j.eurpolymj.2012.08.002

    Article  CAS  Google Scholar 

  14. Zhou C, Wei Z, Yu Y, Shao S, Leng X, Wang Y, Li Y (2019) Biobased long-chain aliphatic polyesters of 1,12-dodecanedioic acid with a variety of diols: Odd-even effect and mechanical properties. Mater Today Commun 19:450–458. https://doi.org/10.1016/j.mtcomm.2019.05.005

    Article  CAS  Google Scholar 

  15. Häußler M, Eck M, Rothauer D, Mecking S (2021) Closed-loop recycling of polyethylene-like materials. Nature 590:423–427. https://doi.org/10.1038/s41586-020-03149-9

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Lebarbé T, Maisonneuve L, Nguyen THN, Gadenne B, Alfos C, Cramail H (2012) Methyl 10-undecenoate as a raw material for the synthesis of renewable semi-crystalline polyesters and poly(ester-amide)s. Polym Chem 3:2842–2851. https://doi.org/10.1039/C2PY20394D

    Article  Google Scholar 

  17. Roumanet P-J, Jarroux N, Goujard L, Petit LJ, Raoul Y, Bennevault V, Guégan P (2020) Synthesis of linear polyesters from monomers based on 1,18-(Z)-octadec-9-enedioic acid and their biodegradability. ACS Sustain Chem Eng 8:16853–16860. https://doi.org/10.1021/acssuschemeng.0c05671

    Article  CAS  Google Scholar 

  18. Pepels MPF, Hansen MR, Goossens H, Duchateau R (2013) Synthesis of polyesters by ring opening polymerization. Macromolecules 46:7668–7677. https://doi.org/10.1021/ma401403x

    Article  ADS  CAS  Google Scholar 

  19. Van der Meulen I, Gubbels E, Huijser S, Sablong R, Koning CE, Heise A, Duchateau R (2011) Catalytic ring-opening polymerization of renewable macrolactones to high molecular weight polyethylene-like polymers. Macromolecules 44:4301–4305. https://doi.org/10.1021/ma200685u

    Article  ADS  CAS  Google Scholar 

  20. Pepels MPF, Bouyahyi M, Heise A, Duchateau R (2013) Kinetic investigation on the catalytic ring-opening (co)polymerization of (macro)lactones using aluminum salen catalysts. Macromolecules 46:4324–4334. https://doi.org/10.1021/ma400731c

    Article  ADS  CAS  Google Scholar 

  21. Bouyahyi M, Duchateau R (2014) Metal-based catalysts for controlled ring-opening polymerization of macrolactones: high molecular weight and well-defined copolymer architectures. Macromolecules 47:517–524. https://doi.org/10.1021/ma402072t

    Article  ADS  CAS  Google Scholar 

  22. Pepels MPF, Koeken RAC, van der Linden SJJ, Heise A, Duchateau R (2015) Mimicking (linear) low-density polyethylenes using modified polymacrolactones. Macromolecules 48:4779–4792. https://doi.org/10.1021/acs.macromol.5b00820

    Article  ADS  CAS  Google Scholar 

  23. Rybak A, Meier MAR (2008) Synthesis of polyesters by acyclic diene metathesis polymerization, selected references 23–37. Chemsuschem 1:542–547. https://doi.org/10.1002/cssc.200800047

    Article  CAS  PubMed  Google Scholar 

  24. Fokou PA, Meier MAR (2009) Use of a renewable and degradable monomer to study the temperature-dependent olefin isomerization during ADMET polymerizations. J Am Chem Soc 131:1664–1665. https://doi.org/10.1021/ja808679w

    Article  CAS  PubMed  Google Scholar 

  25. Ortmann P, Mecking S (2013) Long-spaced aliphatic polyesters. Macromolecules 46:7213–7218. https://doi.org/10.1021/ma401305u

    Article  ADS  CAS  Google Scholar 

  26. Lebarbé T, Neqal M, Grau E, Alfos C, Cramail H (2014) Branched polyethylene mimicry by metathesis copolymerization of fatty acid-based α, ω-dienes. Green Chem 16:1755–1758. https://doi.org/10.1039/C3GC42280A

    Article  Google Scholar 

  27. Shearouse WC, Lillie LM, Reineke TM, Tolman WB (2015) sustainable polyesters derived from glucose and castor oil: Building block structure impacts properties. ACS Macro Lett 4:284–288. https://doi.org/10.1021/acsmacrolett.5b00099

    Article  CAS  PubMed  Google Scholar 

  28. Llevot A, Grau E, Carlotti S, Greliera S, Cramail H (2015) ADMET polymerization of bio-based biphenyl compounds. Polym Chem 6:7693–7700. https://doi.org/10.1039/C5PY01232E

    Article  CAS  Google Scholar 

  29. Lillie LM, Tolman WB, Reineke TM (2017) Structure/property relationships in copolymers comprising renewable isosorbide, glucarodilactone, and 2,5-bis(hydroxymethyl)furan subunits. Polym Chem 24:3746–3754. https://doi.org/10.1039/C7PY00575J

    Article  Google Scholar 

  30. Le D, Samart C, Kongparakul S, Nomura K (2019) Synthesis of new polyesters by acyclic diene metathesis polymerization of bio-based α, ω-dienes prepared from eugenol and castor oil (undecenoate). RSC Adv 9:10245–10252. https://doi.org/10.1039/C9RA01065C

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dannecker P, Biermann U, Sink A, Bloesser FR, Metzger JO, Meier MAR (2019) Fatty acid–derived aliphatic long chain polyethers by a combination of catalytic ester reduction and ADMET or thiol-ene polymerization. Macromol Chem Phys 220:1800400. https://doi.org/10.1002/macp.201800440

    Article  CAS  Google Scholar 

  32. Nomura K, Chaijaroen P, Abdellatif MM (2020) Synthesis of biobased long-chain polyesters by acyclic diene metathesis polymerization and tandem hydrogenation and depolymerization with ethylene. ACS Omega 5:18301–18312. https://doi.org/10.1021/acsomega.0c01965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piccini M, Leak DJ, Chuck CJ, Buchard A (2020) Polymers from sugars and unsaturated fatty acids: ADMET polymerisation of monomers derived from D-xylose, D-mannose and castor oil. Polym Chem 11:2681–2691. https://doi.org/10.1039/C9PY01809C

    Article  CAS  Google Scholar 

  34. Kojima M, Abdellatif MM, Nomura K (2021) Synthesis of semicrystalline long chain aliphatic polyesters by ADMET copolymerization of dianhydro-D-glucityl bis(undec-10-enoate) with 1,9-decadiene and tandem hydrogenation. Catalysts 11:1098. https://doi.org/10.3390/catal11091098

    Article  CAS  Google Scholar 

  35. Piccini M, Lightfoot J, Dominguez BC, Buchard A (2021) Xylose-based polyethers and polyesters via ADMET polymerization toward polyethylene-like materials. ACS Appl Polym Mater 3:5870–5881. https://doi.org/10.1021/acsapm.1c01095

    Article  CAS  Google Scholar 

  36. Oshinowo M, Runge JR, Piccini M, Marken F, Buchard A (2022) Crosslinked xylose-based polyester as a bio-derived and degradable solid polymer electrolyte for Li+-ion conduction. J Mater Chem A 10:6796–6808. https://doi.org/10.1039/D1TA10111K

    Article  CAS  Google Scholar 

  37. Wang X, Zhao W, Nomura K (2023) Synthesis of high-molecular-weight biobased aliphatic polyesters by acyclic diene metathesis polymerization in ionic liquids. ACS Omega 8:7222–7233. https://doi.org/10.1021/acsomega.3c00390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coates GW, Getzler YDYL (2020) Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mat 5:501–516. https://doi.org/10.1038/s41578-020-0190-4

    Article  CAS  Google Scholar 

  39. Collias DI, James MI, Layman JM (2021) Circular economy of polymers: Topics in recycling technologies. American Chemical Society, Washington, DC

    Book  Google Scholar 

  40. Merchan AL, Fischöder T, Hee J, Lehnertz MS, Osterthun O, Pielsticker S, Schleier J, Tiso T, Blank LM, Klankermayer J, Kneer R, Quicker P, Walther G, Palkovits R (2022) Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chem 24:9428–9449. https://doi.org/10.1039/D2GC02244C

    Article  CAS  Google Scholar 

  41. Chu M, Liu Y, Lou X, Zhang Q, Chen J (2022) Rational design of chemical catalysis for plastic recycling. ACS Catal 12:4659–4679. https://doi.org/10.1021/acscatal.2c01286

    Article  CAS  Google Scholar 

  42. Thiyagarajan S, Maaskant-Reilink E, Ewing TA, Julsing MK, van Haveren J (2022) Back-to-monomer recycling of polycondensation polymers: opportunities for chemicals and enzymes. RSC Adv 12:947–970. https://doi.org/10.1039/D1RA08217E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abe R, Komine N, Nomura K, Hirano M (2022) La(iii)-Catalysed degradation of polyesters to monomers via transesterifications. Chem Commun 58:8141–8144. https://doi.org/10.1039/D2CC02448A

    Article  CAS  Google Scholar 

  44. Westhues S, Idel J, Klankermayer J (2018) Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci Adv. https://doi.org/10.1126/sciadv.aat9669

    Article  PubMed  PubMed Central  Google Scholar 

  45. Basterretxea A, Jehanno C, Mecerreyes D, Sardon H (2019) Dual organocatalysts based on ionic mixtures of acids and bases: a step toward high temperature polymerizations. ACS Macro Lett 8:1055–1062. https://doi.org/10.1021/acsmacrolett.9b00481

    Article  CAS  PubMed  Google Scholar 

  46. Payne J, Jones MD (2021) The Chemical recycling of polyesters for a circular plastics economy: Challenges and emerging opportunities. Chemsuschem 14:4041–4070. https://doi.org/10.1002/cssc.202100400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang R, Xu G, Dong B, Guo X, Wang Q (2022) Selective, sequential, and “one-pot” depolymerization strategies for chemical recycling of commercial plastics and mixed plastics. ACS Sustainable Chem Eng 10:9860–9871. https://doi.org/10.1021/acssuschemeng.2c01708

    Article  CAS  Google Scholar 

  48. Nomura K, Aoki T, Ohki Y, Kikkawa S, Yamazoe S (2022) Transesterification of methyl-10-undecenoate and poly(ethylene adipate) catalyzed by (cyclopentadienyl)titanium trichlorides as model chemical conversions of plant oils and acid-, base-free chemical recycling of aliphatic polyesters. ACS Sustain Chem Eng 10:12504–12509. https://doi.org/10.1021/acssuschemeng.2c04877

    Article  CAS  Google Scholar 

  49. Sudhakaran S, Siddiki SMAH, Kitiyanan B, Nomura K (2022) CaO catalyzed transesterification of ethyl 10-undecenoate as a model reaction for efficient conversion of plant oils and their application to depolymerization of aliphatic polyesters. ACS Sustain Chem Eng 10:12864–12872. https://doi.org/10.1021/acssuschemeng.2c04287

    Article  CAS  Google Scholar 

  50. Ohki T, Ogiwara Y, Nomura K (2023) Depolymerization of polyesters by transesterification with ethanol using (cyclopentadienyl)titanium trichlorides. Catalysts 13:421. https://doi.org/10.3390/catal13020421

    Article  CAS  Google Scholar 

  51. Lamm ME, Song L, Wang Z, Rahman MA, Lamm B, Fu L, Tang C (2019) Supramolecular polymer nanocomposites derived from plant oils and cellulose nanocrystals. Macromolecules 52:8967–8975. https://doi.org/10.1021/acs.macromol.7b01691

    Article  ADS  CAS  Google Scholar 

  52. Phan D-N, Lee H, Choi D, Kang C-Y, Im SS, Kim IS (2018) Fabrication of two polyester nanofiber types containing the biobased monomer isosorbide: poly (ethylene glycol 1,4-cyclohexane dimethylene isosorbide terephthalate) and poly (1,4-cyclohexane dimethylene isosorbide terephthalate). Nanomaterials 8:56. https://doi.org/10.3390/nano8020056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu C-S, Wu D-Y, Wang S-S (2023) Nanocomposites of bio-base polyester containing natural hydroxyapatite and duck eggshell made by electrospinning: fabrication and characterization. J Polym Environ 31:519–532. https://doi.org/10.1007/s10924-022-02558-3

    Article  CAS  Google Scholar 

  54. Koo JM, Kang J, Shin S-H, Jegal J, Cha HG, Choy S, Hakkarainen M, Park J, Oh DX, Hwang SY (2020) Biobased thermoplastic elastomer with seamless 3D-printability and superior mechanical properties empowered by in-situ polymerization in the presence of nanocellulose. Compos Sci Technol 185:107885. https://doi.org/10.1016/j.compscitech.2019.107885

    Article  CAS  Google Scholar 

  55. Boufi S, González I, Delgado-Aguilar M, Tarrèsb Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: A review. Carbohydr Polym 154:151–166. https://doi.org/10.1016/j.carbpol.2016.07.117

    Article  CAS  PubMed  Google Scholar 

  56. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155. https://doi.org/10.1002/adma.200400597

    Article  CAS  Google Scholar 

  57. Nair SS, Dartiailh C, Levin DB, Yan N (2019) Highly toughened and transparent biobased epoxy composites reinforced with cellulose Nanofibrils. Polymers 11:612. https://doi.org/10.3390/polym11040612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu L, Zhao J, Qian S, Zhu X, Takahashi J (2021) Green-plasticized poly(lactic acid)/nanofibrillated cellulose biocomposites with high strength, good toughness and excellent heat resistance. Compos Sci Technol 203:108613. https://doi.org/10.1016/j.compscitech.2020.108613

    Article  CAS  Google Scholar 

  59. Jamaluddin N, Hsu Y-I, Asoh T, Uyama H (2021) Effects of Acid-Anhydride-Modified Cellulose Nanofiber on Poly(Lactic Acid) Composite Films. Nanomaterials 11:753. https://doi.org/10.3390/nano11030753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jawaid M, Boufi S, HPSA, Khalil, (2017) Nanofibrillated cellulose reinforcement in thermoset polymer composites. Cellulose-reinforced nanofibre composites production. Properties and applications. woodhead publishing, Duxford, UK, pp 1–18

    Google Scholar 

  61. Chavan P, Singh AK, Kaur G (2018) Recent progress in the utilization of industrial waste and by-products of citrus fruits: a review. J Food Process Eng 41:e12895. https://doi.org/10.1111/jfpe.12895

    Article  CAS  Google Scholar 

  62. Gupta H, Kumar H, Gehlaut AK, Singh SK, Gaur A, Sachan S, Park J-W (2022) Preparation and characterization of bio-composite films obtained from coconut coir and groundnut shell for food packaging. Mater Cycles Waste Manag 24:569–581. https://doi.org/10.1007/s10163-021-01343-z

    Article  CAS  Google Scholar 

  63. Sukthavorn K, Ketruam B, Nootsuwan N, Jongrungruangchok S, Veranitisagul C, Laobuthee A (2021) Fabrication of green composite fibers from ground tea leaves and poly(lactic acid) as eco-friendly textiles with antibacterial property. J Mater Cycles Waste Manag 23:1964–1973. https://doi.org/10.1007/s10163-021-01269-6

    Article  CAS  Google Scholar 

  64. de Oliveira BP, Balieiro LCS, Maia LS, Zanini NC, Teixeira EJO, da Conceição MOT, Medeiros SF, Mulinari DR (2022) Eco-friendly polyurethane foams based on castor polyol reinforced with açaí residues for building insulation. J Mater Cycles Waste Manag 24:553–568. https://doi.org/10.1007/s10163-021-01341-1

    Article  CAS  Google Scholar 

  65. Slavin JL, Savarino V, Paredes-Diaz A, Fotopoulos G (2009) A review of the role of soluble fiber in health with specific reference to wheat dextrin. J Int Med Res 37:1–17. https://doi.org/10.1177/147323000903700101

    Article  CAS  PubMed  Google Scholar 

  66. Matsumoto Y, Abdellatif MM, Nomura K (2022) Polymer composite of plant-based linear and cross-linked polyesters with cellulose nanofibers and their mechanical properties In: 11th The International Symposium on Feedstock Recycling of Polymeric Materials (ISFR2022) P-12, Pattaya, Thailand.

  67. Garcia H, Barros AS, Gonçalves C, Gama FM, Gil AM (2008) Characterization of dextrin hydrogels by FTIR spectroscopy and solid state NMR spectroscopy. Eur Polym J 44:2318–2329. https://doi.org/10.1016/j.eurpolymj.2008.05.013

    Article  CAS  Google Scholar 

  68. Molnár J, Sepsi Ö, Erdei G, Lenk S, Ujhelyi F, Menyhárd A (2020) Modeling of light scattering and haze in semicrystalline polymers. J Polym Sci 58:1787–1795. https://doi.org/10.1002/pol.20200027

    Article  CAS  Google Scholar 

  69. Schmidt RH, Kinloch IA, Burgess AN, Windle AH (2007) The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 23:5707–5712. https://doi.org/10.1021/la062794m

    Article  CAS  PubMed  Google Scholar 

  70. Baheti V, Militky J, Marsalkova M (2013) Mechanical properties of poly lactic acid composite films reinforced with wet milled jute nanofibers. Polym Compos 34:2133–2141. https://doi.org/10.1002/pc.22622

    Article  CAS  Google Scholar 

  71. Lagashetty A, Venkataraman A (2005) Polymer nanocomposites. Resonance 10:49–57. https://doi.org/10.1007/BF02867106

    Article  CAS  Google Scholar 

  72. Wu M, Yuan L, Jiang F, Zhang Y, He Y, You Y-Z, Tang C, Wang Z (2020) Strong autonomic self-healing biobased polyamide elastomers. Chem Mater 32:8325–8332. https://doi.org/10.1021/acs.chemmater.0c02169

    Article  CAS  Google Scholar 

  73. Hashizume M, Hirashima M (2021) Preparation of polymer-immobilized polyimide films using hot pressing and titania coatings. Langmuir 37(14):4403–4410. https://doi.org/10.1021/acs.langmuir.1c00605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alidadi-Shamsabadi M, Behzad T, Bagheri R, Nari-Nasrabadi B (2015) Preparation and characterization of low-density polyethylene/thermoplastic starch composites reinforced by cellulose nanofibers. Polym Compo 36:2147–2342. https://doi.org/10.1002/pc.23144

    Article  CAS  Google Scholar 

  75. Barick AK, Tripathy DK (2010) Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Compos A 41:1471–1482. https://doi.org/10.1016/j.compositesa.2010.06.009

    Article  CAS  Google Scholar 

  76. Khoo RZ, Ismail H, Chow WS (2016) Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chem 19:788–794. https://doi.org/10.1016/j.proche.2016.03.086

    Article  CAS  Google Scholar 

  77. Papageorgiou GZ, Tsanaktsis V, Bikiaris DN (2014) Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN). Phys Chem Chem Phys 16:7946–7958. https://doi.org/10.1039/C4CP00518J

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was partly supported by JST-CREST (Grant Number JPMJCR21L5), JST SICORP (Grant Number JPMJSC19E2), Japan, and Tokyo Metropolitan Government Advanced Research (Grant Number R2-1). The authors express their heartfelt thanks to Dr. Hiroshi Hirano (Osaka Research Institute of Industrial Science and Technology, ORIST) for helpful discussions and support for the preparation of hot press film.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotohiro Nomura.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2526 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, Y., Abdellatif, M.M. & Nomura, K. Polymer composites of biobased aliphatic polyesters with natural abundant fibers that improve the mechanical properties. J Mater Cycles Waste Manag 26, 679–691 (2024). https://doi.org/10.1007/s10163-023-01756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01756-y

Keywords

Navigation