Skip to main content
Log in

Performance of Kenaf Non-woven Mat/PLA Biocomposites under Medium Velocity Impact

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Focus on biofibre-reinforced biopolymer composites as sustainable alternatives to non-biodegradable composites in high-performance applications is increasing. This work focused on characterising the performance of kenaf non-woven mat/PLA biocomposites under medium velocity impact loads. Biocomposite laminates of different fibre contents were fabricated and then analysed for their resistance to medium velocity impact on a high speed gas gun. The perforation threshold limit was determined and impact-induced damages analysed using non-destructive techniques. Results showed that kenaf non-woven mat/PLA biocomposites have a perforation threshold limit of 26 m/s and doubling of fibre content improved the perforation threshold limit by 42.3 %. The impact damage resistance of kenaf non-woven mat/PLA biocomposites increased by 27.6 % when fibre content was doubled. The failure modes resembled that of some conventional fibre-reinforced composites. It was concluded that kenaf non-woven mat/PLA biocomposites have a potential to cushion against medium velocity impacts and hence could be good replacements for the non-biodegradable composites used for cushioning against secondary debris in the medium velocity range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Asaithambi, G. Ganesan, and S. A. Kumar, Fiber. Polym., 15, 847 (2014).

    Article  CAS  Google Scholar 

  2. F. L. King, A. A. J. Kumar, and S. Vijayaragahavan, J. Compos. Mater., 53, 33 (2019).

    Article  CAS  Google Scholar 

  3. K. Oksman, M. Skrifvars, and J.-F. Selin, Compos. Sci. Technol., 63, 1317 (2003).

    Article  CAS  Google Scholar 

  4. R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, and N. Saba, J. Polym. Compos., 40, 446 (2018).

    Article  CAS  Google Scholar 

  5. Z. Zhu, H. Wu, C. Ye, and W. Fu, J. Nat. Fibers., 14, 875 (2017).

    Article  CAS  Google Scholar 

  6. S. B. Roy, S. C. Shit, R. A. Sengupta, and P. R. Shukla, Int. J. Innov. Res. Sci. Eng. Technol., 03, 16814 (2014).

    Article  Google Scholar 

  7. M. H. Pol, G. Liaghat, E. Zamani, and A. Ordys, J. Compos. Mater., 49, 1449 (2015).

    Article  Google Scholar 

  8. Z. Benzait and L. Trabzon, J. Compos. Mater., 52, 3241 (2018).

    Article  CAS  Google Scholar 

  9. C. Evci and M. Gülgeç, J. Compos. Mater., 48, 3215 (2014).

    Article  Google Scholar 

  10. E. Kazemi-Khasragh, F. Bahari-Sambran, M. Hossein Siadati, and R. Eslami-Farsani, Fiber. Polym., 19, 2388 (2018).

    Article  CAS  Google Scholar 

  11. P. N. B. Reis, A. M. Amaro, M. A. Neto, and J. S. Cirne, Fiber. Polym., 20, 158 (2019).

    Article  CAS  Google Scholar 

  12. S. Jambari, M. Y. Yahya, M. R. Abdullah, and M. Jawaid, Fiber. Polym., 18, 563 (2017).

    Article  CAS  Google Scholar 

  13. M. Alkateb, S. M. Sapuan, Z. Leman, M. Jawaid, and M. R. Ishak, Fiber. Polym., 18, 1187 (2017).

    Article  CAS  Google Scholar 

  14. R. Yahaya, S. M. Sapuan, M. Jawaid, Z. Leman, and E. S. Zainudin, Fiber. Polym., 17, 275 (2016).

    Article  CAS  Google Scholar 

  15. J. B. Jordan, C. J. Naito, and B. Z. Haque, J. Compos. Mater., 48, 2505 (2014).

    Article  Google Scholar 

  16. L. Zhu, B. Sun, H. Hu, and B. Gu, J. Compos. Mater., 46, 527 (2012).

    Article  Google Scholar 

  17. M. Pagnoncelli, V. Piroli, D. Romanzini, I. M. Pereira, R. R. Dias, S. C. Amico, and J. A. Zattera, J. Compos. Mater., 52, 289 (2018).

    Article  CAS  Google Scholar 

  18. A. S. Yaghoubi and B. Liaw, J. Compos. Mater., 48, 2011 (2013).

    Article  Google Scholar 

  19. M. Pushparaja, G. Balaganesan, R. Velmurugan, and N. K. Gupta, Procedia Eng., 173, 175 (2017).

    Article  CAS  Google Scholar 

  20. V. S. Gálvez, F. Gálvez, D. Cendón, and L. Sánchez, Procedia Eng., 167, 116 (2016).

    Article  CAS  Google Scholar 

  21. S. Mohan and V. Sundareswaran, Adv. Compos. Lett., 20, 126 (2011).

    Google Scholar 

  22. A. K. Bandaru and S. Ahmad, Procedia Eng., 173, 355 (2017).

    Article  CAS  Google Scholar 

  23. A. K. Bandaru, V. V. Chavan, S. Ahmad, R. Alagirusamy, and N. Bhatnagar, Int. J. Impact Eng., 89, 1 (2016).

    Article  Google Scholar 

  24. Sangamesh, K. S. Ravishankar, and S. M. Kulkarni, Mater. Today Proc., 5, 6916 (2018).

    Article  CAS  Google Scholar 

  25. P. Wambua, B. Vangrimde, S. Lomov, and I. Verpoest, Compos. Struct., 77, 232 (2007).

    Article  Google Scholar 

  26. D. Sun, X. Chen, and M. Mrango, Fiber. Polym., 14, 1184 (2013).

    Article  CAS  Google Scholar 

  27. V. Flaris and G. Singh, J. Vinyl Addit. Technol., 15, 1 (2009).

    Article  CAS  Google Scholar 

  28. S. N. Surip, W. N. R. Wan Jaafar, and N. N. Bonnia, Mater. Sci. Forum., 894, 29 (2017).

    Article  Google Scholar 

  29. T. Ambone, S. Joseph, E. Deenadayalan, S. Mishra, S. Jaisankar, and P. Saravanan, J. Polym. Environ., 25, 1099 (2017).

    Article  CAS  Google Scholar 

  30. Y. Dong, A. Ghataura, H. Takagi, H. J. Haroosh, A. N. Nakagaito, and K. T. Lau, Compos. Part A Appl. Sci. Manuf., 63, 76 (2014).

    Article  CAS  Google Scholar 

  31. N. A. Ibrahim, W. M. Z. W. Yunus, M. Othman, K. Abdan, and K. A. Hadithon, J. Reinf. Plast. Compos., 29, 1099 (2009).

    Article  CAS  Google Scholar 

  32. S. Ochi, Mech. Mater., 40, 446 (2008).

    Article  Google Scholar 

  33. E. Petinakis, L. Yu, G. Simon, and K. Dean in “Fiber Reinforced Polymers — The Technology Appliedfor Concrete Repair” (M. A. Masuelli Ed.), pp.41–59, Janeza Trdine, Rijeka, Croatia, 2013.

  34. S. K. García-Castillo, S. Sánchez-Sáez, J. López-Puente, E. Barbero, and C. Navarro, Compos. Sci. Technol., 69, 711 (2009).

    Article  CAS  Google Scholar 

  35. X. Liu, W. Gu, Q. Liu, X. Lai, and L. Liu, Materials, 11, 1 (2018).

    Google Scholar 

  36. A. VanderKlok, A. Stamm, J. Dorer, E. Hu, M. Auvenshine, J. M. Pereira, and X. Xiao, Int. J. Impact Eng., 111, 244 (2018).

    Article  Google Scholar 

  37. S. Quintero, A. Porras, C. Hernandez, and A. Maranon in “Advances in Natural Fibre Composites: Raw Materials, Processing and Analysis” (R. Fangueiro and S. Rana Eds.), pp.89–98, Springer International, Switzerland, 2018.

  38. P. Murugan, K. Naresh, K. Shankar, R. Velmurugan, and G. Balaganesan, Mater. Today Proc., 9, 16946 (2018).

    Article  CAS  Google Scholar 

  39. G. Faur-Csukat, Macromol. Symp., 239, 217 (2006).

    Article  CAS  Google Scholar 

  40. Y. B. Sudhir Sastry, P. R. Budarapu, Y. Krishna, and S. Devaraj, Theor. Appl. Fract. Mech., 72, 2 (2014).

    Article  CAS  Google Scholar 

  41. S. Abrate, 16th International Conference on Composite Materials, Kyoto, Japan, Japan Aerospace Exploration Agency (JAXA), 8–13 July (2007).

  42. M. G. Babu, R. Velmurugan, and N. K. Gupta, Lat. Am. J. Solids Stru., 3, 21 (2006).

    Google Scholar 

  43. P. Hazell, G. J. Appleby-Thomas, and G. Kister, J. Strain Anal. Eng. Des., 45, 439 (2010).

    Article  Google Scholar 

  44. G. Balaganesan, R. Velmurugan, M. Srinivasan, N. K. Gupta, and K. Kanny, Int. J. Impact Eng., 74, 57 (2014).

    Article  Google Scholar 

  45. F. d. O. Braga, L. T. Bolzan, É. P. Lima Jr, and S. N. Monteiro, J. Mater. Res. Technol., 6, 323 (2017).

    Article  CAS  Google Scholar 

  46. C. Ulven, U. K. Vaidya, and M. V. Hosur, Compos. Struct., 61, 143 (2003).

    Article  Google Scholar 

  47. S. N. A. B. Safri, M. T. H. Sultan, and M. Jawaid, “Durability and Life Prediction in Bio-, Fibre-Reinforced, and Hybrid Composites”, 1st ed. (M. Jawaid, M. Thariq, and N. Saba Eds.), pp.133–147, Woodhead, Cambridge, United Kingdom, 2019.

  48. L. Xuan, G. Chao, L. Xiaokai, L. Lei, B. Jing, X. Feng, L. Pinghua, and C. Chenglin, Prog. Nat. Sci: Mater. Int., 24, 472 (2014).

    Article  CAS  Google Scholar 

  49. S. Mohan and S. Velu, Int. J. Impact Eng., 63, 164 (2014).

    Article  Google Scholar 

  50. Shaktivesh, N. S. Nair, C. V. S. Kumar, and N. K. Naik, Mater. Des., 51, 833 (2013).

    Article  CAS  Google Scholar 

  51. K. S. Pandya, J. R. Pothnis, G. Ravikumar, and N. K. Naik, Mater. Des., 44, 128 (2013).

    Article  CAS  Google Scholar 

  52. L. Sun, R. F. Gibson, F. Gordaninejad, and J. Suhr, Compos. Sci. Technol., 69, 2392 (2009).

    Article  CAS  Google Scholar 

  53. Y. Zhang, Z. Kerr, B. Jarvis, and R. J. Volant, Adv. Struct. Eng., 21, 589 (2018).

    Article  Google Scholar 

  54. B. L. Buitrago, S. K. García-Castillo, and E. Barbero, Compos. Part B-Eng., 49, 86 (2013).

    Article  CAS  Google Scholar 

  55. M. B. Karamis, J. Compos. Mater., 41, 299 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support received from the Durban University of Technology, South Africa.

This work was supported by the National Research Foundation of South Africa [Grant UID-105591 and UID-109815] and the Council for Scientific and Industrial Research of South Africa [Biocomposite for mass transit project grant].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Kanny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyo, M., Kanny, K. & Velmurugan, R. Performance of Kenaf Non-woven Mat/PLA Biocomposites under Medium Velocity Impact. Fibers Polym 21, 2642–2651 (2020). https://doi.org/10.1007/s12221-020-1130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1130-z

Keywords

Navigation