Skip to main content
Log in

Precision Manufacturing of a Linear Fiber Assembly with Axially Varying Compositions and Structures by Using Computer Numerically Controlled Ring Spinning

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ring spinning is an effective technology for forming multi-component spun yarns. There is an increasing need for multifunctional textiles with characteristics, such as antibacterial properties, UV protection, easy cleaning, and color alteration, which can be achieved via various physical and mechanical processing approaches, such as electrospinning, friction spinning, hollow spindle spinning, and ring spinning. In particular, ring spinning is based on the mechanical processing of fibers, and it is suitable for mass customized production systems. However, conventional ring spinning involves a fixed fiber blending ratio and yarn linear density, which limits its usefulness for fabricating multifunctional textiles due to the uncontrollable composite yarn structure. In the present work, we propose a new method for manufacturing a three-component spun yarn by combining a computer numerical control system with a ring spinning frame, which increases the flexibility of yarn production. The as-prepared composite yarns possess axially varying compositions and structures, which can be readily tuned by changing the feeding speeds of the back rollers, and these aspects can facilitate the fabrication of multifunctional textiles for mass production at a low cost. To the best of our knowledge, this is the first work to demonstrate the feasibility of fabricating a three-component spun yarn with tunable compositions and structures by employing a ring spinning frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lee, H. Kwon, J. Seo, S. Shin, J. H. Koo, C. Pang, S. Son, J. H. Kim, Y. H. Jang, and D. E. Kim, Adv. Mater., 27, 2433 (2015).

    Article  CAS  Google Scholar 

  2. P. T. Gibbs and H. Asada, J. Neuroeng. Rehabil., 2, 7 (2005).

    Article  Google Scholar 

  3. L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, and C. Gao, Nat. Commun., 5, 3754 (2014).

    Article  CAS  Google Scholar 

  4. J. A. Lee, M. K. Shin, S. H. Kim, H. U. Cho, G. M. Spinks, G. G. Wallace, M. D. Lima, X. Lepró, M. E. Kozlov, and R. H. Baughman, Nat. Commun., 4, 1970 (2013).

    Article  Google Scholar 

  5. H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, IEEE Engineering in Medicine and Biology Magazine, 22, 28 (2003).

    Article  Google Scholar 

  6. X. Li, J. Dunn, D. Salins, G. Zhou, W. Zhou, S. M. S.-F. Rose, D. Perelman, E. Colbert, R. Runge, and S. Rego, PLoS Biology, 15, e2001402 (2017).

    Article  Google Scholar 

  7. Z. L. Wang, ACS Nano, 7, 9533 (2013).

    Article  CAS  Google Scholar 

  8. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, Nano Letters, 12, 3109 (2012).

    Article  CAS  Google Scholar 

  9. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, and Z. L. Wang, Nature Energy, 1, 16138 (2016).

    Article  CAS  Google Scholar 

  10. Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, and H. Peng, Adv. Mater., 26, 466 (2014).

    Article  CAS  Google Scholar 

  11. A. Dixit and H. S. Mali, Mech. Compos. Mater., 49, 1 (2013).

    Article  Google Scholar 

  12. M. Guo, F. Sun, and W. Gao, Text. Res. J., 89, 2741 (2019).

    Article  CAS  Google Scholar 

  13. M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M.-B. Shim, S. Jeon, and D.-Y. Chung, Nat. Nanotechnol., 7, 803 (2012).

    Article  CAS  Google Scholar 

  14. Y. Zhou, Z.-Y. Qin, L. Li, Y. Zhang, Y.-L. Wei, L.-F. Wang, and M.-F. Zhu, Electrochimica Acta, 55, 3904 (2010).

    Article  CAS  Google Scholar 

  15. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, Science, 321, 1468 (2008).

    Article  CAS  Google Scholar 

  16. K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, Nat. Nanotechnol., 5, 853 (2010).

    Article  CAS  Google Scholar 

  17. L. Rattfält, M. Lindén, P. Hult, L. Berglin, and P. Ask, Med. Biol. Eng. Comput., 45, 1251 (2007).

    Article  Google Scholar 

  18. Y. Shang, X. He, Y. Li, L. Zhang, Z. Li, C. Ji, E. Shi, P. Li, K. Zhu, and Q. Peng, Adv. Mater., 24, 2896 (2012).

    Article  CAS  Google Scholar 

  19. A. Schwarz, I. Kazani, L. Cuny, C. Hertleer, F. Ghekiere, G. De Clercq, G. De Mey, and L. Van Langenhove, Mater. Des., 32, 4247 (2011).

    Article  CAS  Google Scholar 

  20. A. Schwarz, L. Cuny, C. Hertleer, F. Ghekiere, I. Kazani, G. De Clercq, G. De Mey, and L. Van Langenhove, Mater. Technol., 26, 121 (2011).

    Article  CAS  Google Scholar 

  21. A. Schwarz, I. Kazani, L. Cuny, C. Hertleer, F. Ghekiere, G. De Clercq, and L. Van Langenhove, Text. Res. J., 81, 1713 (2011).

    Article  CAS  Google Scholar 

  22. Y. Wang, W. Yu, and F. Wang, Text. Res. J., 89, 121 (2019).

    Article  CAS  Google Scholar 

  23. P. Cui, Y. Zhang, and Y. Xue, J. Eng. Fiber. Fabr., 15, 1558925020902979 (2020).

    Google Scholar 

  24. R.-H. Yang, Y. Xue, and W.-D. Gao, Text. Res. J., 89, 411 (2019).

    Article  CAS  Google Scholar 

  25. R. Yang, Y. Xue, and W.-D. Gao, Industria Textila, 68, 165 (2017).

    Article  Google Scholar 

  26. M. Guo, F. Sun, L. Wang, Y. Xue, R. Yang, and W. Gao, Text. Res. J., 89, 1712 (2019).

    Article  CAS  Google Scholar 

  27. K. E. Grabowska, K. Marciniak, and I. L. Ciesielska-Wrobel, Text. Res. J., 81, 1578 (2011).

    Article  CAS  Google Scholar 

  28. P. P. Tsai, H. Schreuder-Gibson, and P. Gibson, J. Electrostat., 54, 333 (2002).

    Article  CAS  Google Scholar 

  29. I. Ilhan, O. Babaarslan, and D. Vuruskan, Fibres Text. East. Eur., 20, 33 (2012).

    Google Scholar 

  30. N. Venkateshwaran, A. Elayaperumal, and G. Sathiya, Compos. Part B-Eng., 43, 793 (2012).

    Article  CAS  Google Scholar 

  31. C. Liu and R. Bai, J. Membr. Sci., 267, 68 (2005).

    Article  CAS  Google Scholar 

  32. H. Souid, A. Babay, M. Sahnoun, and M. Cheikrouhou, AUTEX Res. J., 8, 72 (2008).

    Google Scholar 

  33. J. Shi, W. Chen, Y. Xue, and E. Yang, J. Text. Res., 6, 13 (2013).

    Google Scholar 

Download references

Acknowledgments

This work is supported by the “Fundamental Research Funds for the Central Universities” under Grant “JUSRP12029”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, P., Xue, Y. & Gao, W. Precision Manufacturing of a Linear Fiber Assembly with Axially Varying Compositions and Structures by Using Computer Numerically Controlled Ring Spinning. Fibers Polym 21, 2675–2684 (2020). https://doi.org/10.1007/s12221-020-1017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1017-z

Keywords

Navigation