Skip to main content
Log in

Flame Retardant Composite Foam Modified by Silylated Nanocellulose and Tris(2-chloropropyl) Phosphate

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Improving flame retardancy is one of the most crucial issues to use polymeric materials for building construction. Most of the flame retardant materials containing halogen atoms delay fire spread, but produce harmful gases during combustion. Hence, we designed and fabricated a composite foam by using a green nanomaterial. Silylated and nanofibrillated cellulose (Si-NFC) was added to polyurethane foam (PUF) containing tris(2-chloropropyl) phosphate (TCPP) in order to reduce the emission of smoke during combustion. Thermal characteristics of the composite foams were investigated through thermogravimetric analysis, limiting oxygen index (LOI), and cone calorimeter tests. The LOI of the Si- NFC embedded composite was increased from 19.3 % to 24.6 %. In addition, the Si-NFC led to an improvement in the thermal stability of the composites by reducing the peak release of heat and smoke. Chemical structure of the residual char was analyzed by using energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-B. Zhao, M. Chen, and H.-B. Chen, ACS Sustain. Chem. Eng., 5, 7012 (2017).

    Article  CAS  Google Scholar 

  2. S. Gutiérrez-González, J. Gadea, A. Rodr íguez, C. Junco, and V. Calderón, Constr. Build. Mater., 28, 653 (2012).

    Article  Google Scholar 

  3. R. Gomez-Rojo, L. Alameda, A. Rodriguez, V. Calderon, and S. Gutierrez-Gonzalez, Polymers (Basel), 11, 359 (2019).

    Article  Google Scholar 

  4. J. H. Park, K. S. Minn, H. R. Lee, S. H. Yang, C. B. Yu, S. Y. Pak, C. S. Oh, Y. S. Song, Y. J. Kang, and J. R. Youn, J. Sound Vib., 406, 224 (2017).

    Article  Google Scholar 

  5. X. Liu, J. Sun, S. Zhang, J. Guo, W. Tang, H. Li, and X. Gu, Polym. Degrad. Stab., 160, 168 (2019).

    Article  CAS  Google Scholar 

  6. Y.-J. Chen, C.-M. Shu, S.-P. Ho, H.-C. Kung, S.-W. Chien, H.-H. Ho, and W.-S. Hsu, Tunn. Undergr. Sp. Tech., 84, 142 (2019).

    Article  Google Scholar 

  7. A. Liu and L. A. Berglund, Eur. Polym. J., 49, 940 (2013).

    Article  CAS  Google Scholar 

  8. G. Shan, L. Jia, T. Zhao, C. Jin, R. Liu, and Y. Xiao, Fiber. Polym., 18, 2196 (2017).

    Article  CAS  Google Scholar 

  9. M. Tokumura, S. Ogo, K. Kume, K. Muramatsu, Q. Wang, Y. Miyake, T. Amagai, and M. Makino, Ecotoxicol. Environ. Saf., 169, 464 (2019).

    Article  CAS  Google Scholar 

  10. M. Ba, B. Liang, and C. Wang, Fiber. Polym., 18, 907 (2017).

    Article  CAS  Google Scholar 

  11. A. Šehić, J. Vasiljević, I. Jordanov, A. Demšar, J. Medved, I. Jerman, M. Čolović, F. Hewitt, T. R. Hull, and B. Simončič, Fiber. Polym., 19, 1194 (2018).

    Article  Google Scholar 

  12. W. Guo, Y. Hu, X. Wang, P. Zhang, L. Song, and W. Xing, Cellulose, 26, 1247 (2018).

    Article  Google Scholar 

  13. J. J. Cheng, W. J. Qu, and S. H. Sun, Polym. Compos., 40, E1006 (2018).

    Article  Google Scholar 

  14. D. Xu, K. Yu, and K. Qian, Polym. Degrad. Stab., 144, 207 (2017).

    Article  CAS  Google Scholar 

  15. J. Guo, G. Liu, Y. Guo, L. Tian, X. Bao, X. Zhang, B. Yang, and J. Cui, J. Polym. Res., 26, 19 (2019).

    Article  Google Scholar 

  16. N. T. Cervin, L. Andersson, J. B. Ng, P. Olin, L. Bergstrom, and L. Wagberg, Biomacromolecules, 14, 503 (2013).

    Article  CAS  Google Scholar 

  17. M. Obori, D. Suh, S. Yamasaki, T. Kodama, T. Saito, A. Isogai, and J. Shiomi, Phys. Rev. Appl., 11, 024044 (2019).

    Article  CAS  Google Scholar 

  18. A. Baidya, M. A. Ganayee, S. Jakka Ravindran, K. C. Tam, S. K. Das, R. H. Ras, and T. Pradeep, ACS Nano, 11, 11091 (2017).

    Article  CAS  Google Scholar 

  19. H. Soeta, S. Fujisawa, T. Saito, L. Berglund, and A. Isogai, ACS Appl. Mater. Interf., 7, 11041 (2015).

    Article  CAS  Google Scholar 

  20. T. Jayaramudu, H.-U. Ko, H. C. Kim, J. W. Kim, E. S. Choi, and J. Kim, Compos. Part B, 156, 43 (2019).

    Article  CAS  Google Scholar 

  21. H. Kim, J. R. Youn, and Y. S. Song, Nanotechnology, 29, 455702 (2018).

    Article  Google Scholar 

  22. J. M. Silva, H. S. Barud, A. B. Meneguin, V. R. L. Constantino, and S. J. L. Ribeiro, Appl. Clay. Sci., 168, 428 (2019).

    Article  CAS  Google Scholar 

  23. M. Santiago-Calvo, V. Blasco, C. Ruiz, R. París, F. Villafañe, and M. Á. Rodríguez-Pérez, J. Appl. Polym. Sci., 136, 47474 (2019).

    Article  Google Scholar 

  24. S. Alasti Bonab, J. Moghaddas, and M. Rezaei, Polymer, 172, 27 (2019).

    Article  CAS  Google Scholar 

  25. S. Wang, S. Xue, C. Ge, Q. Ren, D. Zhao, and W. Zhai, J. Cell. Plast., doi:10.1177/0021955X19841053 (2019).

    Google Scholar 

  26. X. Ji, D. Chen, J. Shen, and S. Guo, Chem. Eng. J., 370, 1341 (2019).

    Article  CAS  Google Scholar 

  27. Z.-J. Cao, W. Liao, S.-X. Wang, H.-B. Zhao, and Y.-Z. Wang, Chem. Eng. J., 361, 1245 (2019).

    Article  CAS  Google Scholar 

  28. Y. Chen, C. Weng, Z. Wang, T. Maertens, P. Fan, F. Chen, M. Zhong, J. Tan, and J. Yang, J. Supercrit. Fluids, 147, 107 (2019).

    Article  CAS  Google Scholar 

  29. S. Zhang, Z. Ren, S. He, Y. Zhu, and C. Zhu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 66, 188 (2007).

    Article  Google Scholar 

  30. L. Liao, X. Li, Y. Wang, H. Fu, and Y. Li, Ind. Eng. Chem. Res., 55, 11689 (2016).

    Article  CAS  Google Scholar 

  31. J. Lubczak and E. Chmiel, Macromol. Res., 27, 543 (2019).

    Article  CAS  Google Scholar 

  32. B. Zhao, D.-Y. Liu, W.-J. Liang, F. Li, J.-S. Wang, and Y.-Q. Liu, J. Anal. Appl. Pyrolysis, 124, 247 (2017).

    Article  CAS  Google Scholar 

  33. X. Chen, L. Huo, C. Jiao, and S. Li, J. Anal. Appl. Pyrolysis, 100, 186 (2013).

    Article  CAS  Google Scholar 

  34. B. Zhao, S. Xu, M. Adeel, and S. Zheng, Polymer, 160, 82 (2019).

    Article  CAS  Google Scholar 

  35. C. Luo, J. Zuo, F. Wang, Y. Yuan, F. Lin, and J. Zhao, Macromol. Res., 26, 346 (2018).

    Article  CAS  Google Scholar 

  36. X. Liu, J. Guo, W. Tang, H. Li, X. Gu, J. Sun, and S. Zhang, Compos. Part A: Appl. Sci. Manuf., 119, 291 (2019).

    Article  CAS  Google Scholar 

  37. W. Xi, L. Qian, and L. Li, Polymers (Basel), 11, 207 (2019).

    Article  Google Scholar 

  38. X. Liu, S. Qin, H. Li, J. Sun, X. Gu, S. Zhang, and J. C. Grunlan, Macromol. Mater. Eng., 304, 1800531 (2018).

    Article  Google Scholar 

  39. H. Ding, K. Huang, S. Li, L. Xu, J. Xia, and M. Li, Polym. Test., 62, 325 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by GRRC program of Gyeonggi Province (GRRC Dankook2016-B03). In addition, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07049173) and by the Korea government (MSIT) (No. NRF-2018R1A5A1024127). The authors are grateful for the supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Ryoun Youn or Young Seok Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Park, J., Minn, K.S. et al. Flame Retardant Composite Foam Modified by Silylated Nanocellulose and Tris(2-chloropropyl) Phosphate. Fibers Polym 20, 2280–2288 (2019). https://doi.org/10.1007/s12221-019-9491-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9491-x

Keywords

Navigation