Skip to main content
Log in

Preparation and Characterization of Surface Modified PPTA Fibers by Ultrasonic-Assisted Hydrogen Peroxide Solutions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The simplest peroxide, hydrogen peroxide (H2O2) was used to prepare the surface modified poly(p-phenylene terephthalaramide) (PPTA) fibers under the assistant of ultrasonic vibration. Fourier transform infrared spectroscopy (FTIR) spectra indicated the increase of the active polar groups on the surface of the fibers. X-ray photoelectron spectroscopy (XPS) analysis confirmed that more carboxyl groups and hydroxyl groups have been obtained after this treatment. Scanning electron microscope (SEM) showed that the surface roughness of the fibers has been improved accordingly. The interfacial properties of modified PPTA fiber/epoxy composites were investigated by the single fiber pull-out test (SFP). The results showed that the interfacial shear strength (IFSS) of PPTA/epoxy composites was remarkably improved by 42.14 % while the breaking strength was not affected appreciably. The modified fiber presented 26.9 % higher moisture regain compared with the original fiber. It proved to be an efficient method to make the surface modified PPTA fiber for the application of the advanced composites at a relatively low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Prasad and S. Talupula, Mater. Today.: Proc., 5, 5993 (2018).

    Google Scholar 

  2. E. M. Kim and J. Jang, Fiber. Polym., 11, 677 (2010).

    Article  CAS  Google Scholar 

  3. T. M. Wright, C. M. Carr, C. A. Grant, V. Lilladhar, and S. J. Russell, Polym. Degrad. Stabil., 121, 193 (2015).

    Article  CAS  Google Scholar 

  4. Y. Rao, A. J. Waddon, and R. J. Farris, Polyme., 42, 5937 (2001).

    Article  CAS  Google Scholar 

  5. A. A. Leal, J. M. Deitzel, S. H. McKnight, and J. W. Gillespie, Polyme., 50, 1228 (2009).

    Article  Google Scholar 

  6. S. Hussain, C. Yorucu, I. Ahmed, R. Hussain, and I. U. Rehman, Surf. Coat. Tech., 258, 458 (2014).

    Article  CAS  Google Scholar 

  7. W. Fan, H. Tian, H. Wang, T. Zhang, and S. Wang, Polym. Test., 72, 147 (2018).

    Article  CAS  Google Scholar 

  8. J. Chen, Y. Zhu, Q. Ni, Y. Fu, and X. Fu, Appl. Surf. Sci., 321, 103 (2014).

    Article  CAS  Google Scholar 

  9. S. Palola, E. Sarlin, S. Kolahgar Azari, V. Koutsos, and J. Vuorinen, Appl. Surf. Sci., 410, 145 (2017).

    Article  CAS  Google Scholar 

  10. H. Yuan, W. Wang, D. Yang, X. Zhou, Z. Zhao, L. Zhang, S. Wang, and J. Feng, Surf. Coat. Tech., 344, 614 (2018).

    Article  CAS  Google Scholar 

  11. V. B. C. Tan, X. S. Zeng, and V. P. W. Shim, Int. J. Impact. Eng., 35, 1303 (2008).

    Article  Google Scholar 

  12. B. Mercer, E. Zywicz, and P. Papadopoulos, Polyme., 114, 329 (2017).

    Article  CAS  Google Scholar 

  13. U. K. Fatema and Y. Gotoh, Surf. Coat. Tech., 206, 3472 (2012).

    Article  CAS  Google Scholar 

  14. B.X. Wang, M. Du, J. C. L, Q. Q. Zhou, and L. M. Jin, Appl. Surf. Sci., 349, 333 (2015).

    Article  CAS  Google Scholar 

  15. D. E. Yilmaz and A. Vanduin, Polyme., 154, 172 (2018).

    Article  CAS  Google Scholar 

  16. R. X. Gu, J. R. Yu, C. C. Hu, L. Chen, J. Zhu, and Z. M. Hu, Appl. Surf. Sci., 258, 10168 (2012).

    Article  CAS  Google Scholar 

  17. H. P. Zhang, J. C. Zhang, J. Y. Chen, X. M. Hao, S. Y. Wang, X. X. Feng, and Y. H. Guo, Polym. Degrad. Stabil., 91, 2761 (2006).

    Article  CAS  Google Scholar 

  18. S. Li, A. Gu, G. Z. Liang, and L. Yuan, Appl. Surf. Sci., 265, 519 (2013).

    Article  CAS  Google Scholar 

  19. Y. Kusano, K. Norrman, J. Drews, F. Leipold, and N. Krebs, Surf. Coat. Tech., 205, 490 (2011).

    Article  Google Scholar 

  20. K. Matsuyama, S. Tanaka, and T. Okuyama, Chem. Eng. J., 246, 106 (2014).

    Article  CAS  Google Scholar 

  21. F. Lionetto, F. Balle, and A. Maffezzoli, J. Mater. Process. Tech., 247, 289 (2017).

    Article  CAS  Google Scholar 

  22. M. Su, A. Gu, G. Liang, and L. Yuan, Appl. Surf. Sci., 257, 3158 (2011).

    Article  CAS  Google Scholar 

  23. Y. Zhang, Z. Jiang, Y. Huang, and Q. Li, Fiber. Polym., 12, 1014 (2011).

    Article  CAS  Google Scholar 

  24. J. Singletary, H. Davis, Y. Song, M. K. Ramasubramanian, and V. W. Knoff, J. Mater. Sci., 35, 583 (2000).

    Article  CAS  Google Scholar 

  25. J. Jin, H. J. Park, M. S. Rhimsi, and M. Kim, Polym. Eng. Sci., 29, 765 (1989).

    Article  CAS  Google Scholar 

  26. J. R. Brown, N. M. Browne, P. J. Burchill, and G. T. Egglestone, Text. Res. J., 53, 214 (1983).

    Article  CAS  Google Scholar 

  27. M. C. Andrews and R. J. Young, J. Mater. Sci., 30, 5607 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the editors and the reviewers for their constructive comments, which helped us to improve the manuscript. We are also grateful to Dr. Zhaohui Jiang, Zengge Guo and Qicai Wang for their highly enlightening suggestions in the revising of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Duan, C. Preparation and Characterization of Surface Modified PPTA Fibers by Ultrasonic-Assisted Hydrogen Peroxide Solutions. Fibers Polym 20, 2310–2316 (2019). https://doi.org/10.1007/s12221-019-9235-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9235-y

Keywords

Navigation