Skip to main content
Log in

Broad Spectrum of Antimicrobial Activity of Cotton Fabric Modified with Oxalic Acid and CuO/Cu2O Nanoparticles

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study discusses the possibility of fabrication of textile nanocomposites with antimicrobial activity against antibiotics-resistant bacterial strains and yeast. Modification of cotton fabric with oxalic acid solutions of different concentrations provided free carboxyl groups for binding of Cu2+ -ions from copper (II) sulfate solution which were further reduced with sodium borohydride in alkaline solution. An increase in the concentration of applied oxalic acid resulted in larger amounts of free carboxyl groups on the cotton fibers, Cu2+ -ions uptake and total amounts of Cu-based nanoparticles after reduction. XPS and XRD analyses suggested that nanoparticles mainly consisted of CuO with fractions of Cu2O. Fabricated textile nanocomposites ensured maximum reduction of Gram-negative E. coli ATCC 25922, E. coli NCTC 13846, E. coli ATCC BAA-2469, K. pneumoniae ATCC-BAA 2146 and P. aeruginosa ATCC 27853, Gram-positive bacteria S. aureus ATCC 25923 and S. aureus ATCC 43300 and yeast C. albicans ATCC 24433. Additionally, controlled release of Cu2+ -ions from fabrics into the physiological saline solution was obtained within 24 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Tamayo, M. Azócar, M. Kogan, A. Riveros, and M. Páez, Mater. Sci. Eng. C, 69, 1391 (2016).

    Article  CAS  Google Scholar 

  2. M. K. S. Ballo, S. Rtmi, J. Kiwi, C. Pulgarin, and J. M. Entenza, J. Photoch. Photobio. B, 174, 229 (2017).

    Article  CAS  Google Scholar 

  3. G. Borkow and J. Gabby, Med. Hypotheses., 70, 990 (2008).

    Article  CAS  Google Scholar 

  4. S. Rtimi, C. Pulgarin, M. Robyr, A. Aybush, I. Shelaev, F. Gostev, V. Nadtochenko, and J. Kiwi, Appl. Catal. B, 208, 135 (2017).

    Article  CAS  Google Scholar 

  5. I. Galani, G. Priniotakis, I. Chronis, A. Tzerachoglou, D. Plachouras, M. Chatzikonstantinou, P. Westrbroek, and M. Souli, Diagn. Micr. Infec. Dis., 85, 205 (2016).

    Article  Google Scholar 

  6. M. Irfan, S. Perero, M. Miola, G. Maina, A. Ferri, M. Ferraris, and C. Balagna, Cellulose, 24, 2331 (2017).

    Article  CAS  Google Scholar 

  7. B. Simoncic and D. Klemencic, Text. Res. J., 86, 210 (2016).

    Article  CAS  Google Scholar 

  8. I. Perelshtein, Y. Ruderman, N. Perkas, J. Beddow, G. Singh, M. Vinatoru, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, and A. Gedanken, Cellulose, 20, 1215 (2013).

    Article  CAS  Google Scholar 

  9. A. Errokh, A. M. Ferraria, D. S. Conceição, L. F. Vieira Ferreira, A. M. Botelho de Rego, M. Rei Vilar, and S. Boufi, Carbohydr. Polym., 141, 229 (2016).

    Article  CAS  Google Scholar 

  10. D. Markovic, M. Korica, M. Kostic, Ž. Radovanovic, Z. Šaponjic, M. Mitric, and M. Radetic, Cellulose, 25, 829 (2018).

    Article  CAS  Google Scholar 

  11. N. C. Cady, J. L. Behnke, and A. D. Strickland, Adv. Funct. Mater., 21, 2506 (2011).

    Article  CAS  Google Scholar 

  12. S. K. Bajpai, M. Bajpai, and L. Sharma, J. Appl. Polym. Sci., 126, E318 (2012).

    Article  Google Scholar 

  13. Q. Xu, X. Ke, N. Ge, L. Shen, Y. Zhang, F. Fu, and X. Liu, Fiber. Polym., 19, 1004 (2018).

    Article  CAS  Google Scholar 

  14. Q. Xu, P. Duan, Y. Zhang, F. Fu, and X. Liu, Fiber. Polym., 19, 2324 (2018).

    Article  CAS  Google Scholar 

  15. D. Markovic, C. Deeks, T. Nunney, Ž. Radovanovic, M. Radoicic, Z. Šaponjic, and M. Radetic, Carbohydr. Polym., 200, 173 (2018).

    Article  CAS  Google Scholar 

  16. A. Sedighi, M. Montazer, and S. Nasrin, Carbohydr. Polym., 110, 489 (2014).

    Article  CAS  Google Scholar 

  17. M. Montazer, M. Dastjerdi, M. Azdaloo, and M. M. Rad, Cellulose, 22, 4049 (2015).

    Article  CAS  Google Scholar 

  18. V. Kumar and T. Yang, Carbohydr. Polym., 48, 403 (2002).

    Article  CAS  Google Scholar 

  19. J. Praskalo, M. Kostic, A. Potthast, G. Popov, B. Pejic, and P. Skundric, Carbohydr. Polym., 77, 791 (2009).

    Article  CAS  Google Scholar 

  20. R. Khajavi and A. Berendjchi, ACS Appl. Mater. Interfaces, 6, 18795 (2014).

    Article  CAS  Google Scholar 

  21. K. T. Meilert, D. Laub, and J. Kiwi, J. Mol. Catal. A, 237, 101 (2005).

    Article  CAS  Google Scholar 

  22. W. Xu and Y. Li, Text. Res. J., 70, 588 (2000).

    Article  CAS  Google Scholar 

  23. O. Šauperl, K. Stana-Kleinschek, and V. Ribitsch, Text. Res. J., 79, 780 (2009).

    Article  Google Scholar 

  24. Q. M. Liu, D. B. Zhou, Y. Yamamoto, R. Ichino, and M. Okido, Trans. Nonferrous Met. Soc. China, 22, 117 (2012).

    Article  CAS  Google Scholar 

  25. M. Miloševic, M. Radoicic, Z. Šaponjic, T. Nunney, C. Deeks, V. Lazic, M. Mitric, T. Radetic, and M. Radetic, Cellulose, 21, 3781 (2014).

    Article  Google Scholar 

  26. D. Mihailovic, Z. Šaponjic, M. Radoicic, S. Lazovic, C. Baily, P. Jovancic, J. Nedeljkovic, and M. Radetic, Cellulose, 18, 811 (2011).

    Article  CAS  Google Scholar 

  27. T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh, and M. Lameii, Appl. Surf. Sci., 255, 2730 (2008).

    Article  CAS  Google Scholar 

  28. C. K. Wu, M. Yin, S. O'Brien, and T. Koberstein, Chem. Mater., 18, 6054 (2006).

    Article  CAS  Google Scholar 

  29. M. M. Hashemi, J. Rovig, S. Weber, B. Hilton, M. M. Forouzan, and P. B. Savage, Antimicrob. Agents. Ch., 61, e00202-17 (2017).

  30. M. Exner, S. Bhattacharya, B. Christiansen, J. Gebel, P. Goroncy-Bermes, P. Hartemann, P. Heeg, C. Ilschner, A. Kramer, E. Larson, W. Merkens, M. Mielke, P. Oltmanns, B. Ross, M. Rotter, R. M. Schmithausen, H. G. Sonntag, and M. Trautmann, GMS Hyg. Infect. Control., 12, 1 (2017).

    Google Scholar 

  31. F. Rossi, R. Girardello, A. P. Cury, T. S. R. Di Gioia, J. N. de Almeida Jr, and A. J. da Silva Duarte, Braz. J. Infect. Dis., 21, 98 (2017).

    Article  Google Scholar 

  32. C. Castro, R. Sanjines, C. Pulgarin, P. Osorio, S. A. Giraldo, and J. Kiwi, J. Photochem. Photobiol. A., 216, 295 (2010).

    Article  CAS  Google Scholar 

  33. S. Rtimi, R. Sanjines, C. Pulgarin, and J. Kiwi, Biointerphases, 9, 029012 (2014).

    Article  Google Scholar 

  34. S. Rtimi, M. Ballo, C. Pulgarin, J. Entenza, A. Bizzini, and J. Kiwi, Appl. Cat. A, 498, 4185 (2015).

    Article  Google Scholar 

  35. M. Ballo, S. Rtimi, S. Mancini, J. Kiwi, C. Pulgarin, and J. Entenza, Appl. Microb. Biotech., 100, 5945 (2106).

    Article  Google Scholar 

  36. S. Rtimi, D. D. Dionysiou, S. C. Pillai, and J. Kiwi, Applied Catalysis B, 240, 291 (2019).

    Article  CAS  Google Scholar 

  37. H. E. Emam, H. B. Ahmed, and T. Bechtold, Carbohydr. Polym., 165, 255 (2017).

    Article  CAS  Google Scholar 

  38. S. Shankar and J. W. Rhim, Carbohydr. Polym., 163, 137 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this study was provided by the Ministry of Education, Science and Technological Development of Republic of Serbia (projects no. 45020 and 172056). The authors would like to acknowledge networking support by the COST Action CA17107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Radetić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marković, D., Ašanin, J., Nunney, T. et al. Broad Spectrum of Antimicrobial Activity of Cotton Fabric Modified with Oxalic Acid and CuO/Cu2O Nanoparticles. Fibers Polym 20, 2317–2325 (2019). https://doi.org/10.1007/s12221-019-9131-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9131-5

Keywords

Navigation