Skip to main content

Advertisement

Log in

Green synthesis of copper oxide nanoparticles: a promising approach in the development of antibacterial textiles

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Textiles are known to be the best substrates for growing a variety of microorganisms efficiently at appropriate temperatures and humidity in contact with the human body. Currently, increasing public concern about hygiene has been driving many investigations about antimicrobial surface modification of textiles. The present research reports on the synthesis and characterization of nanosized copper oxide nanoparticles (CuONPs) and their application on cotton fabric to increase the bactericidal and hydrophobic properties. The synthesized materials have been subjected to spectroscopic and microscopic characterizations to help in understanding their structure, morphology, size, and composition. Further, upon dispersion of the nanoparticles onto the fabric, its hydrophobicity and mechanical properties were evaluated using electron microscopy and universal testing machine. Treated cotton fabric exhibits higher tensile strength (32 MPa) than the untreated one (27 MPa), whereas copper nanoparticle-coated cotton fabric shows a fair hydrophobicity. Moreover, CuONPs-treated and untreated cotton fabrics have been analyzed for bactericidal activity against various gram-negative and gram-positive strains. Finally, the CuONPs-coated cotton fabric displays greater antibacterial activity against E. coli and exhibits superior antimicrobial activity even after 30 cycles of washing, indicating that the CuONPs-coated cotton fabric has a higher potential to be employed as a medical textile to avoid cross-infection within a clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clardy, J, Fischbach, MA, Currie, CR, “The Natural History of Antibiotics.” Curr Biol., 19 437–441 (2009)

    Article  Google Scholar 

  2. Hajipour, MJ, Fromm, KM, Ashkarran, AA, de Aberasturi, DJ, de Larramendi, IR, “Antibacterial Properties of Nanoparticles.” Trends Biotechnol., 30 499–511 (2012)

    Article  CAS  Google Scholar 

  3. Usman, MS, El Zowalaty, ME, Shameli, K, Zainuddin, N, Salama, M, “Synthesis, Characterization, and Antimicrobial Properties of Copper Nanoparticles.” Int. J. Nanomedicine., 8 4467–4479 (2013)

    Google Scholar 

  4. Hsueh, PR, “New Delhi Metallo-ß-lactamase-1 (NDM-1): An Emerging Threat Among Enterobacteriaceae.” J. Formos Med. Assoc., 109 685–687 (2010)

    Article  CAS  Google Scholar 

  5. Poole, K, “Mechanisms of Bacterial Biocide and Antibiotic Resistance.” J. Appl Microbiol., 92 55–64 (2002)

    Article  Google Scholar 

  6. Kamyar, S, Mansor, BA, Wan Md Zin Wan, Y, Abdolhossein, R, Nor Azowa, I, Mohsen, Z, “Highly Effective Antibacterial Textile Containing Silver Nanoparticles.” Int. J. Nanomed., 5 875–887 (2010)

  7. Gao, Y, Cranston, R, “Recent Advances in Antimicrobial Treatments of Textiles.” Text. Res. J., 78 60–72 (2008)

    Article  CAS  Google Scholar 

  8. Jayaraman, R, “Antibiotic Resistance: An Overview of Mechanisms and a Paradigm Shift.” Curr. Sci., 96 1475–1484 (2009)

    CAS  Google Scholar 

  9. Otsuki, N, Dang, NH, Kumagai, E, Kondo, A, Iwata, S, Morimoto, C, “Aqueous Extract of Carica papaya Leaves Exhibits Anti-tumor Activity and Immunomodulatory Effects.” J. Ethnopharmacol., 127 (3) 760–767 (2010)

    Article  Google Scholar 

  10. Sankar, R, Manikandan, P, Malarvizhi, V, Fathima, T, Shivashangari, KS, Ravikumar, V, “Green Synthesis of Colloidal Copper Oxide Nanoparticles Using Carica papaya and Its Application in Photocatalytic Dye Degradation.” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 121 746–750 (2014)

    Article  CAS  Google Scholar 

  11. Knetsch, ML, Koole, LH, “New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles.” Polymers, 3 340–366 (2011)

    Article  CAS  Google Scholar 

  12. Chatzimitakos, TG, Stalikas, CD, “Qualitative Alterations of Bacterial Metabolome after Exposure to Metal Nanoparticles with Bactericidal Properties: A Comprehensive Workflow Based on 1H NMR, UHPLC-HRMS, and Metabolic Databases.” J. Proteome Res., 15 3322–3330 (2016)

    Article  CAS  Google Scholar 

  13. Shameli, K, Ahmad, BM, Jaffar Al-Mulla, EA, “Green Biosynthesis of Silver Nanoparticles Using Callicarpa maingayi Stem Bark Extraction.” Molecules, 17 8506–8517 (2012)

    Article  CAS  Google Scholar 

  14. Balazs, AC, Emrick, T, Russell, TP, “Nanoparticle Polymer Composites: Where Two Small Worlds Meet.” Science, 314 1107–1110 (2006)

    Article  CAS  Google Scholar 

  15. Adonizio, A, Kong, KF, Mathee, K, “Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa by South Florida Plant Extracts.” Antimicrob. Agents Chemother., 52 198–203 (2007)

    Article  Google Scholar 

  16. Ahmad, A, Mukherjee, P, Senapati, S, Mandal, D, Khan, MI, Kumar, R, Sastry, M, “Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium oxysporum.” Colloids Surf. B Biointerfaces, 28 313–318 (2003)

    Article  CAS  Google Scholar 

  17. Neely, AN, Maley, MP, “Survival of Enterococci and Staphylococci on Hospital Fabrics and Plastic.” J. Clin. Microbiol., 38 724–726 (2000)

    Article  CAS  Google Scholar 

  18. Daren, AJ, Bonden, JM, “Vancomycin-Resistant Enterococci in Intensive Care Hospital Settings.” Mem inst oswaldo Cruz, Rio de Jamino, 93 587–588 (1998)

    Article  Google Scholar 

  19. Kanagasubbulakshmi, S, Kadirvelu, K, “Green Synthesis of Iron Oxide Nanoparticles Using Lagenaria siceraria and Evaluation of Its Antimicrobial Activity.” Defence Life Sci. J., 2 422–427 (2017)

    Article  Google Scholar 

  20. Pattanayak, M, Nayak, PL, “Green Synthesis and Characterization of Zero Valent Iron Nanoparticles from the Leaf Extract of Azadirachta indica (Neem).” World J. Nano Sci. Technol., 2 06–09 (2013)

    Google Scholar 

  21. Gottimukkala, KSV, Harika, RP, Zamare, D, “Green Synthesis of Iron Nanoparticles Using Green Tea Leaves Extract.” J. Nanomed. Biother. Discov., 7 151 (2017)

    Google Scholar 

  22. Balamurughan, MG, Mohanraj, S, Kodhaiyoli, S, Pugalenthi, V, “Ocimum Sanctum Leaf Extract Mediated Green Synthesis of Iron Oxide Nanoparticles: Spectroscopic and Microscopic Studies.” J. Chem. Pharmaceut. Sci., 4 201–204 (2014)

    Google Scholar 

  23. Turakhia, B, Turakhia, P, Shah, S, “Green Synthesis of Zero Valent Iron Nanoparticles from Spinacia oleracea (Spinach) and Its Application in Waste Water Treatment.” J. Adv. Res. Appl. Sci., 5 (1) 46–51 (2018)

    Google Scholar 

  24. Turakhia, B, Chikkala, S, Shah, S, “Novelty of Bioengineered Iron Nanoparticles in Nanocoated Surgical Cotton: A Green Chemistry.” Adv. Pharmacolog. Sci., (2019).

  25. Sivaraj, R, Rahman, PK, Rajiv, P, Narendhran, S, Venckatesh, R, “Biosynthesis and Characterization of Acalypha indica Mediated Copper Oxide Nanoparticles and Evaluation of Its Antimicrobial and Anticancer Activity.” R Spectrochim. Acta A Mol Biomol. Spectrosc., 129 255–258 (2014)

    Article  CAS  Google Scholar 

  26. Zhou, K, Wang, R, Xu, B, Li, Y, “Synthesis, Characterization and Catalytic Properties of CuO Nanocrystals with Various Shapes.” Nanotechnology, 17 68–78 (2006)

    Google Scholar 

  27. Wiegand, I, Hilpert, K, Hancock, RE, “Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances.” Nat. Protoc., 3 163–175 (2008)

    Article  CAS  Google Scholar 

  28. Xu, JF, Ji, W, Shen, ZX, “Preparation and Characterization of CuO Nanocrystals.” J. Solid State Chem., 147 516–519 (1999)

    Article  CAS  Google Scholar 

  29. Abdel-Aziz, MS, Shaheen, MS, El-Nekeety, AA, Abdel-Wahhab, MA, “Antioxidant and Antibacterial Activity of Silver Nanoparticles Biosynthesized Using Chenopodium murale Leaf Extract.” J. Saudi Chem. Soc., 18 356–363 (2014)

    Article  Google Scholar 

  30. Janardhanan, SK, Ramasamy, I, Nair, BU, “Synthesis of Iron Oxide Nanoparticles Using Chitosan and Starch Templates.” Transit. Met. Chem., 33 127–131 (2008)

    Article  Google Scholar 

  31. Shishtawy, E, Asiri, RM, Abdelwahed, AM, Al-Otaibi, MM, “In Situ Production of Silver Nanoparticle on Cotton Fabric and Its Antimicrobial Evaluation.” Cellulose, 18 75–82 (2011)

    Article  Google Scholar 

  32. Patel, BH, Chaudhari, SB, Patel, PN, “Nano Silica Loaded Cotton Fabric; Characterization and Mechanical Testing.” Res. J. Eng. Sci., 3 19–24 (2014)

    CAS  Google Scholar 

  33. Kayani, ZN, Umer, M, Riaz, S, Naseem, S, “Characterization of Copper Oxide Nanoparticles Fabricated by the Sol-Gel Method.” J. Electron. Mater., 44 3704–3709 (2015)

    Article  CAS  Google Scholar 

  34. Padil, VVT, Černík, M, “Green Synthesis of Copper Oxide Nanoparticles Using Gum Karaya as a Biotemplate and Their Antibacterial Application.” Int. J. Nanomed., 8 889 (2013)

    Google Scholar 

  35. Das, D, Nath, BC, Phukon, P, Dolui, SK, “Synthesis and Evaluation of Antioxidant and Antibacterial Behavior of CuO Nanoparticles.” Colloids Surf. B Biointerfaces, 101 430–433 (2013)

    Article  CAS  Google Scholar 

  36. Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC, Kakru, A, “Toxicity of Nanosized and Bulk ZnO, CuO and TiO2 to Bacteria Vibrio fischeri and Crustaceans Daphnia magna and Thamnocephalus platyurus.” Chemosphere, 71 1308–1316 (2008)

    Article  CAS  Google Scholar 

  37. Tawale, JS, Dey, K, Pasricha, R, Sood, KN, Srivastava, AK, “Modification at Lattice Scale for an Optimized Optical Response of Alx(ZnO)1-x Nanostructures.” Thin Solid Films, 519 1244–1247 (2010)

    Article  CAS  Google Scholar 

  38. Ghosh, S, Yadav, S, Reynolds, N, “Antibacterial Properties of Cotton Fabric Treated with Silver Nanoparticles.” J. Text. Inst., 101 917–924 (2010)

    Article  CAS  Google Scholar 

  39. Tiwari, DK, Behari, J, Sen, P, “Application of Nanoparticles in Waste Water Treatment.” World Appl. Sci. J., 3 417–433 (2008)

    Google Scholar 

  40. Chatterjee, AK, Chakraborty, R, Basu, T, “Mechanism of Antibacterial Activity of Copper Nanoparticles.” Nanotechnology, 25 135101 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mysore Sridhar Santosh or Sejal Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turakhia, B., Divakara, M.B., Santosh, M.S. et al. Green synthesis of copper oxide nanoparticles: a promising approach in the development of antibacterial textiles. J Coat Technol Res 17, 531–540 (2020). https://doi.org/10.1007/s11998-019-00303-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00303-5

Keywords

Navigation