Skip to main content
Log in

Degradation and Drug-release Behavior of Polylactic Acid (PLA) Medical Suture Coating with Tea Polyphenol (TP) - Polycaprolactone (PCL)/Polyglycolide (PGA)

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The drug-release time of suture should meet with the healing time of wound, so it is needed to control the drugrelease performance of polylactic acid (PLA) suture. In this paper, two biodegradable polymers with different degradation rates, such as polycaprolactone (PCL) and polyglycolide (PGA), were applied to carry the drug of tea polyphenol (TP). The drug-loading finishing solution which is made of PCL/PGA carriers and TP, was coated on the PLA suture. The drug-release rate and time of PLA suture could be regulated by adjusting the proportion of PCL/PGA carriers. The results indicate that the surface of drug-loaded PLA suture becomes rough. There is no obvious chemical reaction among the drug, carriers and PLA suture, just physical adhesion. With the increasing of PCL in drug-carriers, the strength of suture gradually increases. At 70/30 of PCL/PGA, the fracture elongation of suture reaches the highest point. In process of degradation, the surface of drugloaded PLA suture appears some holes after 25 weeks. The strength of sutures decreases gradually during degradation, and the effective strength time of sutures with various proportions of PCL/PGA is different. The drug-release rate of the suture is fast at early stage and slow at later stage and the higher the PGA proportion is, the faster the drug-release rate of the suture is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lou, C. Yao, Y. Chen, T. Hsieh, J. Lin, and W. Hsing, Text. Res. J., 78, 958 (2008).

    Article  CAS  Google Scholar 

  2. A. Vieira, R. Medeiros, R. Guedes, A. Marques, and V. Tita, Mater. Sci. Forum, 732, 56 (2013).

    Google Scholar 

  3. X. Sui, S. Wang, Y. Li, and L. Xu, Chinese J. Sensor. Actuat., 30, 157 (2017).

    Google Scholar 

  4. W. Zhang, Z. Chen, S. Ma, Y. Wang, F. Zhang, K. Wang, C. Yang, X. Pu, J. Ma, Y. Wang, F. Leng, F. Ran, and Y. Kuang, Int. J. Polym. Mater. Polym. Biomat., 65, 38 (2016).

    Article  CAS  Google Scholar 

  5. I. Arrnentano, N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M. A. Lopez-Manchado, and J. M. Kenny, Prog. Polym. Sci., 38, 1720 (2013).

    Article  CAS  Google Scholar 

  6. S. Liu, G. Wu, H. Guo, Z. Zuo, and J. Dai, J. Donghua Univ. Engl., 32, 97 (2015).

    Google Scholar 

  7. B. Tyler, D. Gullotti, and A. Mangraviti, Adv. Drug Deliver. Rev., 107, 163 (2016).

    Article  CAS  Google Scholar 

  8. K. Alicja, C. Marco, B. Tomasz, S. Krisztina, B. Andrea, B. Jan, and S. Wojciech, Biofabrication, 9, 044105 (2017).

    Article  CAS  Google Scholar 

  9. A. Visco, D. Nocita, A. Giamporcaro, S. Ronca, G. Forte, A. Pistone, and C. Espro, J. Mech. Behav. Biomed., 68, 308 (2017).

    Article  CAS  Google Scholar 

  10. L. Zhang, J. Song, and W. Wang, J. Med. Theor. Pract., 29, 2040 (2016).

    Google Scholar 

  11. D. H. Lee, T. Y. Kwon, K. H. Kim, S. T. Kwon, D. H. Cho, S. H. Jang, J. S. Son, and K. B. Lee, Polym. Bull., 71, 1933 (2014).

    Article  CAS  Google Scholar 

  12. T. Matsuda, T. Iwasaki, M. Mitsutsuji, K. Hirata, Y. Maekawa, D. Tsugawa, Y. Sugita, E. Shimada, and Y. Kakeji, Surg. Endosc., 29, 3386 (2015).

    Article  PubMed  Google Scholar 

  13. O. Buezo, X. Cusco, R. Seijas, A. Sallent, O. Ares, P. Álvarez-Díaz, and R. Cugat, Surg. Innov., 22, 474 (2015).

    Article  PubMed  Google Scholar 

  14. I. Bonadies, F. Cimino, C. Carfagna, and A. Pezzella, Biomacromolecules, 16, 1667 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. P. Sibanda, X. Chen, and L. Wang, Prog. Biomed. Eng., 35, 13 (2014).

    Google Scholar 

  16. D. M. Correia, C. Ribeiro, G. Botelho, J. Borges, C. Lopes, F. Vaz, S. A. C. Carabineiro, A. V. Machado, and S. Lanceros-Méndez, Appl. Surf. Sci., 371, 74 (2016).

    Article  CAS  Google Scholar 

  17. G. Gorrasi, R. Pantani, M. Murariu, and P. Dubois, Macromol. Mater. Eng., 299, 104 (2014).

    Article  CAS  Google Scholar 

  18. Y. He, Z. W. Hu, M. D. Ren, C. K. Ding, P. Chen, Q. Gu, and Q. Wu, J. Mater. Sci. Mater. El., 25, 561 (2014).

    Article  CAS  Google Scholar 

  19. J. W. Qin, Y. Y. Jiang, J. J. Fu, Y. Q. Wan, R. H. Yang, W. D. Gao, and H. B. Wang, Iran. Polym. J., 22, 729 (2013).

    Article  CAS  Google Scholar 

  20. S. H. Lee, I. Y. Kim, and W. S. Song, Macromol. Res., 22, 657 (2014).

    Article  CAS  Google Scholar 

  21. W. J. Xu and Y. Q. Yang, J. Biomat. Sci. Polym., 21, 445 (2010).

    Article  CAS  Google Scholar 

  22. G. H. Wu, S. Q. Liu, H. S. Jia, and J. M. Dai, J. Wuhan Univ. Technol., 31, 164 (2016).

    Article  CAS  Google Scholar 

  23. Thimour-Bergstrom, C. Roman-Emanuel, H. Schersten, O. Friberg, T. Gudbjartsson, and A. Jeppsson, Eur. J. Cardiothorac., 44, 931 (2014).

    Article  Google Scholar 

  24. W. G. Zhou, H. P. Qian, L. S. Yan, D. Luo, N. Xu, and J. X. Wu, Mater. Lett., 152, 293 (2015).

    Article  CAS  Google Scholar 

  25. K. Maeda, H. Yasui, T. Matsuura, T. Yamamori, M. Suzuki, M. Nagane, J. M. Nam, O. Inanami, and H. Shirato, J. Radiat. Res., 57, 307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. W. H. Zhou, M. R. Du, L. Dong, X. Y. Zhu, J. Y. Yang, Y. Y. He, and D. J. Li, Hum. Reprod., 22, 2743 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. R. Augustine and K. Rajarathinam, Int. J. Nano Dimens., 2, 205 (2012).

    CAS  Google Scholar 

  28. S. Padmakumar, J. Joseph, M. H. Neppalli, S. E. Mathew, S. V. Nair, S. A. Shankarappa, and D. Menon, ACS Appl. Mater. Inter., 8, 6925 (2016).

    Article  CAS  Google Scholar 

  29. B. Joseph, A. George, S. Gopi, N. Kalarikkal, and S. Thomas, Int. J. Pharmaceut., 524, 454 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuqiang Liu or Gaihong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wu, G., Zhang, X. et al. Degradation and Drug-release Behavior of Polylactic Acid (PLA) Medical Suture Coating with Tea Polyphenol (TP) - Polycaprolactone (PCL)/Polyglycolide (PGA). Fibers Polym 20, 229–235 (2019). https://doi.org/10.1007/s12221-019-8829-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8829-8

Keywords

Navigation