Skip to main content

Advertisement

Log in

Investigate the degradable behavior of a poly (glycolide-co-trimethylene carbonate) suture material used in a vascular surgery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A copolymer of polyglycolide (PGA) and trimethylene carbonate (TMC) used to fabricate a surgical suture with a trade name Maxon was investigated. Mach–Zehnder interferometer equipped to a suture drawing device was used to measure the optical and mechanical properties of PGA/TMC copolymer. These properties were investigated for the degradable samples during the incubation periods from 4 to 32 days. The pH level of buffer solution, crystallinity percent, swelling rates percent and weight retention of a PGA/TMC copolymer were measured. The results indicate that there was an overall decreasing for the mechanical properties with increasing the incubation time. The PGA/TMC suture maintained approximately 55% from its original mechanical properties after 32 days of incubation. An empirical formula was calculated to simulate the effect of a degradation process on of PGA/TMC suture and predict Young’s modulus values during whole periods of degradation. It is found that the incubated sutures will be completely absorbed after approximately 8 weeks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang L, Wang C, Wu S, Fan Y, Li X (2020) Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater Sci 8:2714–2733. https://doi.org/10.1039/D0BM00269K

    Article  CAS  PubMed  Google Scholar 

  2. Echave MC, Hernáez-Moya R, Iturriaga L, Pedraz JL, Lakshminarayanan R, Dolatshahi-Pirouz A, Alireza TN, Orive G (2019) Recent advances in gelatin-based therapeutics. Expert Opin Biol Ther 19:773–779. https://doi.org/10.1080/14712598.2019.1610383

    Article  CAS  PubMed  Google Scholar 

  3. Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Aviles FF, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasché P, Pesce M, Perrino C, Prunier F, Linthout SV, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijte JPG (2019) ESC working group on cellular biology of the heart: position paper for cardiovascular research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Res 115:488–500. https://doi.org/10.1093/cvr/cvz010

    Article  CAS  Google Scholar 

  4. Singhvi M, Zinjarde S, Gokhale D (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiology 127:1612–1626. https://doi.org/10.1111/jam.14290

    Article  CAS  Google Scholar 

  5. Zanetti M, Camino G, Thomann R, Mülhaupt R (2001) Synthesis and thermal behaviour of layered silicate–EVA nanocomposites. Polymer 42:4501–4507. https://doi.org/10.1016/S0032-3861(00)00775-8

    Article  CAS  Google Scholar 

  6. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16. https://doi.org/10.22203/ecm.v005a01

    Article  CAS  PubMed  Google Scholar 

  7. Zong X, Ran S, Fang D, Hsiao BS, Chu B (2003) Control of structure, morphology and property in electrospun poly (glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer 44:4959–4967. https://doi.org/10.1016/S0032-3861(03)00464-6

    Article  CAS  Google Scholar 

  8. Antheunis H, van der Meer J-C, de Geus M, Kingma W, Koning CE (2009) Improved mathematical model for the hydrolytic degradation of aliphatic polyesters. Macromolecules 42:2462–2471. https://doi.org/10.1021/ma802222m

    Article  CAS  Google Scholar 

  9. Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Proc Impacts 17:1513–1521. https://doi.org/10.1039/C5EM00207A

    Article  CAS  Google Scholar 

  10. Rosen T, Bloemen EM, LoFaso VM, Clark S, Flomenbaum NE, Breckman R et al (2019) Acute precipitants of physical elder abuse: qualitative analysis of legal records from highly adjudicated cases. J Interpers Violence 34:2599–2623. https://doi.org/10.1177/0886260516662305

    Article  PubMed  Google Scholar 

  11. Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P (2017) Molecular sensors of blood flow in endothelial cells. Tren Molec Med 23:850–868. https://doi.org/10.1016/j.molmed.2017.07.007

    Article  CAS  Google Scholar 

  12. Lim C-G, Jang J, Kim C (2018) Cellular machinery for sensing mechanical force. BMB Rep 51:623–629. https://doi.org/10.5483/BMBRep.2018.51.12.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15:665–673. https://doi.org/10.1038/nm.1955

    Article  CAS  PubMed  Google Scholar 

  14. Oliver-De La Cruz J, Nardone G, Vrbsky J, Pompeiano A, Perestrelo AR, Capradossi F, Melajová K, Filipensky P, Forteab G (2019) Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomater 205:64–80. https://doi.org/10.1016/j.biomaterials.2019.03.009

    Article  CAS  Google Scholar 

  15. Greenhalgh R, Dempsey-Hibbert NC, Whitehead KA (2019) Antimicrobial strategies to reduce polymer biomaterial infections and their economic implications and considerations. Inter Biodeter Biodegrad 136:1–14. https://doi.org/10.1016/j.ibiod.2018.10.005

    Article  CAS  Google Scholar 

  16. Migliaresi C, Fambri L, Cohn D (1994) A study on the in vitro degradation of poly (lactic acid). J Biomater Sci Polym Ed 5:591–606. https://doi.org/10.1163/156856294X00220

    Article  CAS  PubMed  Google Scholar 

  17. Zurita R, Franco L, Puiggalí J, Rodríguez-Galán A (2007) The hydrolytic degradation of a segmented glycolide–trimethylene carbonate copolymer (Maxon™). Polym degrad stab 92:975–985. https://doi.org/10.1016/j.polymdegradstab.2007.03.002

    Article  CAS  Google Scholar 

  18. Ata EC, Dereli Y (2015) Effects of polyglyconate (maxon) suture reinforced sternum closure technique on aseptic sternal dehiscence in high risk patients. Koşuyolu Heart J 18:15–18. https://doi.org/10.5578/khj.9535

    Article  Google Scholar 

  19. Chor A, Gonçalves RP, Costa AM, Farina M, Ponche A, Sirelli L, Schrodj G, Gree S, Rodrigues de Andrade L, Anselme K, Lopes Dias M (2020) In Vitro degradation of electrospun poly (Lactic-Co-Glycolic Acid)(PLGA) for oral mucosa regeneration. Polymers 12:1853–1872. https://doi.org/10.3390/polym12081853

    Article  CAS  PubMed Central  Google Scholar 

  20. Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Inter J Molec Sci 10:4033–4065. https://doi.org/10.3390/ijms10094033

    Article  CAS  Google Scholar 

  21. Mainil-Varlet P, Curtis R, Gogolewski S (1997) Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides. J Biomed Mater Res 36:360–380. https://doi.org/10.1002/(SICI)1097-4636(19970905)36:3%3c360::AID-JBM11%3e3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  22. Sokkar TZN, El-Farahaty KA, El-Bakary MA, Omer E, Agour M (2017) Characterization of axially tilted fibres utilizing a single-shot interference pattern. Opt Laser Eng 91:144–150. https://doi.org/10.1016/j.optlaseng.2016.11.018

    Article  Google Scholar 

  23. El-Bakary MA (2008) Determining the opto-mechanical and geometrical properties of high-density polyethylene fibres. Opt Laser Eng 46:328–335. https://doi.org/10.1016/j.optlaseng.2007.11.007

    Article  Google Scholar 

  24. Sokkar TZN, El-Farahaty KA, El-Bakary MA, Omer E, Hamza AA (2016) A modified method for accurate correlation between the craze density and the optomechanical properties of fibers using pluta microscope. Micros Res Tech 79:422–430. https://doi.org/10.1002/jemt.22645

    Article  CAS  Google Scholar 

  25. Hamza AA, Sokkar TZ, El-Bakary MA (2001) Determinating the optical properties of highly oriented fibres using a multiple- beam technique”. J Opt A: Pure Appl Opt 3:421–427

    Article  CAS  Google Scholar 

  26. Hamza AA, Fouda I, Sokkar TZ, El-Bakary MA (1996) Opto-thermal properties of fibres: 3-effect of anisotropic optical parameters in polypropylene fibres as a function of annealing process. Polym Test 15:245–268. https://doi.org/10.1016/0142-9418(95)00017-8

    Article  CAS  Google Scholar 

  27. El-Bakary MA (2004) Determination of radial structural properties and spectral dispersion curves of poly(aryl ether ether ketone) fibre. Polym Inter 53(1):48–55. https://doi.org/10.1002/pi.1201

    Article  CAS  Google Scholar 

  28. El-Bakary MA, El-Farahaty KA, El-Sayed NM (2019) In vitro degradation characteristics of polyglycolic/polycaprolactone (PGA/PCL) copolymer material using Mach-Zehnder interferometer. Mater Res Express 6:105374. https://doi.org/10.1088/2053-1591/ab4307

    Article  CAS  Google Scholar 

  29. Im JN, Kim JK, Kim H-K, In CH, Lee KY, Park WH (2007) In vitro and in vivo degradation behaviors of synthetic absorbable bicomponent monofilament suture prepared with poly (p-dioxanone) and its copolymer. Polym degrad stab 92:667–674. https://doi.org/10.1016/j.polymdegradstab.2006.12.011

    Article  CAS  Google Scholar 

  30. De Giglio E, Trapani A, Cafagna D, Sabbatini L, Cometa S (2011) Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Analy Bioanaly Chem 400:1997–2002. https://doi.org/10.1007/s00216-011-4962-y

    Article  CAS  Google Scholar 

  31. Davison NL, Barrère-de Groot F, Grijpma DW (2014) Degradation of biomaterials. Tissue Engineering. 177–215.

  32. Hofmann D, Entrialgo-Castaño M, Kratz K, Lendlein A (2009) Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials. Adv Mater 21(32–33):3237–3245

    Article  CAS  PubMed  Google Scholar 

  33. Barakat N, Hamza AA (1990) Interferometry of fibrous materials. Adam Hilger, Bristol

    Google Scholar 

  34. El-Sayed NM, El-Bakary MA, Ibrahim MA, Elgamal MA, Hamza AA (2021) Characterization of the mechanical and structural properties of PGA/TMC copolymer for cardiac tissue engineering. Micros Res Tech 84:1596–1606. https://doi.org/10.1002/jemt.23720

    Article  CAS  Google Scholar 

  35. Pegoretti A, Traina M (2018) Liquid crystalline organic fibers and their mechanical behavior. Elsevier, Handbook of Properties of Textile and Technical Fibres

    Book  Google Scholar 

  36. Sokkar TNZ, El-Farahaty KA, El-Bakary MA, Omar EZ, Hamza AA (2017) Optical birefringence and molecular orientation of crazed fibres utilizing the phase shifting interferometric technique. Opt Laser Technol 94:208–216. https://doi.org/10.1016/j.optlastec.2017.03.037

    Article  CAS  Google Scholar 

  37. Zhang M, Niu H, Lin Z, Qi S, Chang J, Ge Q et al (2015) Preparation of high performance copolyimide fibers via increasing draw ratios. Macromol Mater Eng 300:1096–1107. https://doi.org/10.1002/mame.201500126

    Article  CAS  Google Scholar 

  38. Hamza AA, Fouda I, Sokkar TNZ, El-Bakary MA (1996) Effect of annealing on the optical and mechanical properties of cold drawn polypropylene fibres. Polym Int 39:129–140. https://doi.org/10.1002/(SICI)1097-0126(199602)39:2%3c129::AID-PI479%3e3.0.CO;2-V

    Article  CAS  Google Scholar 

  39. Andriano KP, Pohjonen T, Törmälä P (1994) Processing and characterization of absorbable polylactide polymers for use in surgical implants. J Appl Biomater 5:133–140. https://doi.org/10.1002/jab.770050206

    Article  CAS  PubMed  Google Scholar 

  40. Ryu D, Inoue T, Osaki K (1998) A birefringence study of polymer crystallization in the process of elongation of films. Polymer 39:2515–2520. https://doi.org/10.1016/S0032-3861(97)00571-5

    Article  CAS  Google Scholar 

  41. Kołbuk D, Sajkiewicz P, Kowalewski TA (2012) Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy. Euro Polym J 48:275–283. https://doi.org/10.1016/j.eurpolymj.2011.11.012

    Article  CAS  Google Scholar 

  42. Todoruk TM, Hartley ID, Reid ME (2011) Origin of birefringence in wood at terahertz frequencies. IEEE Trans Terahertz Sci Technol 2:123–130. https://doi.org/10.1109/TTHZ.2011.2177692

    Article  Google Scholar 

  43. Ding L, Davidchack RL, Pan J (2012) A molecular dynamics study of Young’s modulus change of semi-crystalline polymers during degradation by chain scissions. J Mech Behav Biomed Mater 5:224–230. https://doi.org/10.1016/j.jmbbm.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  44. Celotto A, Capellini V, Baldo C, Dalio M, Rodrigues A, Evora P (2008) Effects of acid-base imbalance on vascular reactivity. Braz J Med Biol Res 41:439–445. https://doi.org/10.1590/S0100-879X2008005000026

    Article  CAS  PubMed  Google Scholar 

  45. AlSarhan MAA (2019) Systematic Review of the Tensile Strength of Surgical Sutures. J Biomater Tissue Eng 9:1467–1476. https://doi.org/10.1166/jbt.2019.2177

    Article  Google Scholar 

  46. Fontananova E (2015) Tensile strength. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin Heidelberg

    Google Scholar 

  47. El-Bakary MA, El-Farahaty KA, El-Sayed NM (2019) Investigating the mechanical behavior of PGA/PCL copolymer surgical suture material using multiple-beam interference microscopy. Fibers Polym 20:1116–1124. https://doi.org/10.1007/s12221-019-1060-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. El-Bakary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, A.A., El-Bakary, M.A., Ibrahim, M.A. et al. Investigate the degradable behavior of a poly (glycolide-co-trimethylene carbonate) suture material used in a vascular surgery. Polym. Bull. 79, 10783–10801 (2022). https://doi.org/10.1007/s00289-021-04070-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04070-5

Keywords

Navigation