Skip to main content
Log in

Effect of Degumming Methods on the Degradation Behavior of Silk Fibroin Biomaterials

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Degradation behavior is a key consideration in the field of silk fibroin (SF) biomaterials. Degumming to remove sericin is a prerequisite for SF purification; however, the impact of degumming on the degradation behavior of SF biomaterials has not been established. In this study, two different degumming systems, Na2CO3 and NaHCO3, were used. Na2CO3 exhibited higher degumming efficiency but caused greater degradation of the fibroin. The results demonstrated that NaHCO3 degumming could afford regenerated SF with higher molecular weight, resulting in SF films with higher mechanical strengths. The enzymatic degradation behaviors indicated that the SF films prepared by the Na2CO3 degumming process showed faster degradation, revealing that the choice of degumming method has a substantial impact on the biodegradation of SF-based materials. The results showed that manipulating the degumming conditions can be used to tune the molecular weight of the SF, in turn providing control over the degradation rate of SF biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Thurber, F. G. Omenetto, and D. L. Kaplan, Biomaterials, 71, 145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. X. Li, R. You, Z. Luo, G. Chen, and M. Li, J. Mater. Chem. B, 4, 2903 (2016).

    Article  CAS  Google Scholar 

  3. H. Han, H. Ning, S. Liu, Q. P. Lu, Z. Fan, H. Lu, G. Lu, and D. L. Kaplan, Adv. Funct. Mater., 26, 421 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug. Deliv. Rev., 65, 457 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Q. Zhang, S. Chen, R. You, Z. Tariq, J. Huang, M. Li, and S. Yan, Fiber. Polym., 18, 1056 (2017).

    Article  CAS  Google Scholar 

  6. Y. Cao and B. Wang, Int. J. Mol. Sci., 10, 1514 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. You, Y. Xu, G. Liu, Y. Liu, X. Li, and M. Li, Polym. Degrad. Stab., 109, 226 (2014).

    Article  CAS  Google Scholar 

  8. R. You, Y. Xu, Y. Liu, X. Li, and M. Li, Biomed. Mater., 10, 015003 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head, and D. L. Kaplan, Biomaterials, 29, 3415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Q. Lu, B. Zhang, M. Li, B. Zuo, D. L. Kaplan, Y. Huang, and H. Zhu, Biomacromolecules, 12, 1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. J. Jin, J. Park, V. Karageorgiou, U. J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan, Adv. Funct. Mater., 15, 1241 (2005).

    Article  CAS  Google Scholar 

  12. X. Li, J. Zhang, Y. Feng, S. Yan, Q. Zhang, and R. You, Polym. Degrad. Stab., 147, 57 (2018).

    Article  CAS  Google Scholar 

  13. B. Kundu, N. E. Kurland, V. K. Yadavalli, and S. C. Kundu, Int. J. Biol. Macromol., 70, 70 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. B. J. Allardyce, R. Rajkhowa, R. J. Dilley, M. D. Atlas, J. Kaur, and X. Wang, Text. Res. J., 86, 275 (2015).

    Article  CAS  Google Scholar 

  15. K. Liang, Y. Gong, J. Fu, S. Yan, Y. Tan, R. Du, X. Xing, G. Mo, Z. Chen, Q. Cai, D. Sun, and Z. Wu, Int. J. Biol. Macromol., 57, 99 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. M. Ho, H. Wang, and K. Lau, Appl. Surf. Sci., 258, 3948 (2012).

    Article  CAS  Google Scholar 

  17. R. Rajkhowa, L. Wang, J. R. Kanwar, and X. G. Wang, J. Appl. Polym. Sci., 119, 1339 (2011).

    Article  CAS  Google Scholar 

  18. G. B. Perea, C. Solanas, N. Marí-Buyé, R. Madurga, F. Agulló-Rueda, A. Muinelo, C. Riekel, M. Burghammer, I. Jorge, J. Vázquez, G. R. Plaza, A. L. Torres, F. del Pozo, G. V. Guinea, M. Elices, J. L. Cenis, and J. Pérez-Rigueiro, Eur. Polym. J., 78, 129 (2016).

    Article  CAS  Google Scholar 

  19. H. Yamada, H. Nakao, Y. Takasu, and K. Tsubouchi, Mater. Sci. Eng., C, 14, 41 (2001).

    Article  Google Scholar 

  20. Q. Wang, Q. Chen, Y. Yang, and Z. Shao, Biomacromolecules, 14, 285 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. H. Wang and Y. Zhang, Soft Matter, 9, 138 (2013).

    Article  CAS  Google Scholar 

  22. J. S. Ko, K. Yoon, C. S. Ki, H. J. Kim, D. G. Bae, K. H. Lee, Y. H. Park, and I. C. Um, Int. J. Biol. Macromol., 55, 161 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. K. Yoon, H. N. Lee, C. S. Ki, D. Fang, B. S. Hsiao, B. Chu, and I. C. Um, Int. J. Biol. Macromol., 61, 50 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. H. J. Kim and I. C. Um, Int. J. Biol. Macromol., 67, 387 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. B. K. Park and I. C. Um, Int. J. Biol. Macromol., 106, 1166 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. J. S. Ko, C. S. Ki, and I. C. Um, Fiber. Polym., 19, 507 (2018).

    Article  CAS  Google Scholar 

  27. C. S. Ki, J. W. Kim, H. J. Oh, K. H. Lee, and Y. H. Park, Int. J. Biol. Macromol., 41, 346 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. H. J. Kim, M. K. Kim, K. H. Lee, S. K. Nho, M. S. Han, and I. C. Um, Int. J. Biol. Macromol., 104, 294 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. J. H. Lee, D. W. Song, Y. H. Park, and I. C. Um, Int. J. Biol. Macromol., 89, 273 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. K. Nultsch and O. Germershaus, Eur. J. Pharm. Sci., 106, 254 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. R. You, Y. Zhang, Y. Liu, G. Liu, and M. Li, Nat. Sci., 05, 10 (2013).

    CAS  Google Scholar 

  32. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Z. Chen, D. Rana, T. Matsuura, D. Meng, and C. Q. Lan, Chem. Eng. J., 276, 174 (2015).

    Article  CAS  Google Scholar 

  34. H. H. Kim, D. W. Song, M. J. Kim, S. J. Ryu, I. C. Um, C. S. Ki, and Y. H. Park, Polymer, 90, 26 (2016).

    Article  CAS  Google Scholar 

  35. J. U. Furst, K. Buse, I. Breunig, P. Becker, J. Liebertz, and L. Bohaty, Opt. Lett., 40, 1932 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renchuan You or Xiufang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Luo, Z., Zhang, Q. et al. Effect of Degumming Methods on the Degradation Behavior of Silk Fibroin Biomaterials. Fibers Polym 20, 45–50 (2019). https://doi.org/10.1007/s12221-019-8658-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8658-9

Keywords

Navigation