Skip to main content
Log in

Multilayered Glass Filament Yarn Surfaces as Sensor Yarn for In-situ Monitoring of Textile-reinforced Thermoplastic Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

High-performance textile filament yarns, more precisely glass filament (GF) yarn, were used as base material for the development of sensor yarns (SY) because GFs offer high tensile strengths and moduli of elasticity in addition to beneficial decomposition temperatures and elongation. The aim of this work was the creation of a multifunctional sensor yarn (MFSY) based of GF. To achieve this aim, a homogeneous, completely coated first (1st) and second (2nd) silver (Ag) layer was built on the GF yarn surface by developing new technologies. The 1st Ag layer monitors damage within the thermoplastic composite globally, whereas the 2nd Ag layer monitors it locally and defects interface damage. Also, there was an insulation layer between two Ag layers, leading to a total of three layers built on the GF surface. Its surface morphology was determined by light and scanning electron microscopy (SEM) to assess Ag layer properties, such as structure, homogeneity, and cracking. For structural analysis, GFs were investigated using a Fourier transform infrared spectrometer (FTIR). The Ag layer thickness was determined after coating and metallization. Textile-physical tests of the GF in terms of tensile strength, elasticity modulus, elongation at break, yarn fineness and electric conductivity, were carried out before and after silvering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Berthelet, “Composite Materials”, Springer-Verlag. New-York, 1998.

    Google Scholar 

  2. A. Lund and B. Hagstroem, J. Appl. Polym. Sci., 116, 2685 (2010).

    CAS  Google Scholar 

  3. D. J. Leo, “Engineering Analysis of Smart Materials Systems”, Hoboken, p.128, p.142, pp.351–384, Wiley, New-York, 2007.

    Google Scholar 

  4. A. Talbourdet, F. Rault, A. Cayla, C. Cochrane, E. Devaux, A. Gonthier, G. Lemort, and C. Campagne, 17th AUTEX World Textile Conf., Greece, 531, 29–31 May, 2017.

    Google Scholar 

  5. C. Li, E. T. Thostenson, and T. W. Chou, Compos. Sci. Technol., 68, 1227 (2008).

    Article  CAS  Google Scholar 

  6. H. Zhao, Y. Zhang, P. D. Bradford, Q. Zhou, F. G. Yuan, and Y. Zhu, Nanotechnology, 21, 305502 (2010).

    Article  Google Scholar 

  7. X. H. Zhong, Y. L. Li, Y. K. Liu, X. H. Qiao, Y. Feng, J. Liang, F. Hou, and J. Y. Li, Adv. Mater., 22, 692 (2010).

    Article  CAS  Google Scholar 

  8. S. Ali, A. Fernando, P. Potluri, and M. Gresil, 15th AUTEX World Textile Conf. Bucharest, Romania, 10–12 June, 2015.

    Google Scholar 

  9. F. Syrén, C. Li, E. Billing, A. Lund, and V. Nierstrasz, 16th AUTEX World Textile Confer., Ljubljana, Slovenja, 8–10 June, 2016.

    Google Scholar 

  10. G. Zhou and L. M. Sim, Smart Mater. Struct., 11, 925 (2002).

    Article  Google Scholar 

  11. H. Zhang, U. Hassler, M. Genest, H. Fernandes, F. Robitaille, C. Ibarra-Castanedo, S. Joncas, and X. Maldague, Opt. Eng., 54, 104109 (2015).

    Article  Google Scholar 

  12. C. Ibarra-Castanedo, J. M. Piau, S. Guilbert, N. P. Avdelidis, M. Genest, M. Bendada, P. Xavier, and V. Maldague, RNDE, 20, 1 (2009).

    Google Scholar 

  13. S. Vedula, Master Thesis, Clemson University, 2010.

    Google Scholar 

  14. N. Muto, Y. Arai, S. G. Shin, H. Matsubara, H. Yanagida, T. Naktsuji, M. Sugita, and T. Nakatsuji, Comp. Sci. Technol., 61, 875 (2001).

    Article  CAS  Google Scholar 

  15. A. Horoschenkoff, T. Mueller, and A. Kroell, ICCM-17, Edinburgh, Scotland, 27–31 July, 2009.

    Google Scholar 

  16. A. Kunadt, E. Starke, G. Pfeifer, and Ch. Cherif, Tech. Mess., 77, 113 (2010).

    Article  CAS  Google Scholar 

  17. Ch. Cherif, “Textile Werkstoffe für den Leichtbau: Techniken, Verfahren, Materialien, Eigenschaften”, ISBN: 9783642179914; 3642179916; 3642179924; 9783642179921, pp.63–71, Springer, Berlin, Heidelberg, 2011.

    Book  Google Scholar 

  18. T. Onggar, M.M.B. Hasan, R. D. Hund, and Ch. Cherif, Technical Textiles, 3, E156 (2015).

    Google Scholar 

  19. T. Onggar, E. Häntzsche, A. Nocke, R. D. Hund, and Ch. Cherif, Smart Mater. Struct., 26, 045013 (2017).

    Article  Google Scholar 

  20. German Institute for Standardization e.V., Norm DIN EN 54 345 T5, 1992.

  21. German Institute for Standardization e.V., Norm DIN EN ISO 2060 1195, 1995.

  22. German Institute for Standardization e.V., Norm DIN EN ISO 3314, 1992.

  23. B. Wulfhorst, “Glass Fibers - Fiber Tables According to P. A. Koch”, Vol. 43/95, pp.21–32, Deutscher Verlag GmbH, Frankfurt, 1993.

    Google Scholar 

  24. D. A. Keyworth, Talanta, 4, 383 (1959).

    Article  Google Scholar 

  25. L. Gmelin, “Handbuch der anorganischen Chemie, Silber, Teil B6: Komplexverbindungen mit neutralen und innerkomplexbildenden Liganden: Silber(I)-Komplexe mit N- und O-haltigen Liganden”, Vol. 8, pp.306–309, pp.225-233, Berlin Springer, Berlin, 1975.

    Google Scholar 

  26. P. Pollak and R. Vouillamoz in “Ullmann's Fine Chemicals” (B. Elvers Ed.), Vol. 1, p.169, Wiley-VCH, Weinheim, 2014.

    Google Scholar 

  27. N. Blaževic, D. Kolbah, B. Belin, V. Šunjić, and F. Kajfež, Synthesis, 3, 161 (1979).

    Article  Google Scholar 

  28. D. J. Campbell, K. J. Beckman, C. E. Calderon, P. W. Doolan, R. M. Ottosen, A. B. Ellis, and G. C. Lisensky, J. Chem. Educ., 76, 537 (1999).

    Article  CAS  Google Scholar 

  29. L. Gmelin in “Handbuch der anorganischen Chemie, Silber teil A3: Das Element, Technologie und Darstellung, Isotope, Atom, Molekeln, Physikalische Eigenschaften des Metalls. Teilchengröße und Teilchenzahl” (R. J. Meyer and P. Erich Eds.), Vol. 16, pp.208–210, Chemie Verlag, Weinheim, 1970.

    Google Scholar 

  30. H. N. Petersen, Y. Kusano, P. Brøndsted, and K. Almdal, 34th Risoe Int. Symp. Mater. Sci., 2–5 September, Roskilde, Denmark, 2013.

    Google Scholar 

  31. H. B. Bong, J. Korean Phys. Soc., 59, 3192 (2011).

    Article  Google Scholar 

  32. R. C. Zhuang, T. Burghardt, and E. Maeder, Comp. Sci. Technol., 70, 1523 (2010).

    Article  CAS  Google Scholar 

  33. K. Efimenko, W. E. Wallace, and J. Genzer, J. Colloid. Interface Sci., 254, 306 (2002).

    Article  CAS  Google Scholar 

  34. B. Ahmed, S. K. Raghuvanshi, N. P. Sharma, J.B.M. Krishna, and M. A. Wahab, PNN, 2, 42 (2013).

    Google Scholar 

  35. German Institute for Standardization e.V., Norm DIN EN IS0 139, 2005.

Download references

Acknowledgments

The authors would like to thank the German Research Foundation [DFG CH174/40-1: Multifunctional sensor yarns for real time in situ sensing of multiple scale damage behaviour for the purpose of structural health monitoring of textile reinforced composites] for the financial support in terms of the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toty Onggar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onggar, T., Häntzsche, E., Hund, RD. et al. Multilayered Glass Filament Yarn Surfaces as Sensor Yarn for In-situ Monitoring of Textile-reinforced Thermoplastic Composites. Fibers Polym 20, 1945–1957 (2019). https://doi.org/10.1007/s12221-019-1237-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1237-2

Keywords

Navigation