Skip to main content
Log in

Fabrication of Laminated Composite Grid Structures Using VIP

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the fabrication of laminated composite grids, as a new class of grid structures, is presented. These structures can be constituted from a various number of grid layers, with different patterns, fibers and orientations. This concept yields to a large variety of laminated grid configurations with different coupling effects compare to conventional grids. In the current study, the fabrication of a laminated grid plate, which composed of four orthogrid layers, is presented. The vacuum infusion process (VIP) is employed to manufacture the specimen. Moreover, a simulation is conducted using COMSOL Multiphysics software to determine the appropriate locations of resin inlet and air vent tubes. The degrees of cure and temperature profiles of the specimen are obtained in simulation and experimental studies. The results show, the simulation fits the experimental observations reasonably well and the VIP method is confirmed to be appropriate for manufacturing the high-quality laminated grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Y. Kam, V. L. Freeman, and A. P. Penton, U.S. Patents, 4086378 (1978).

    Google Scholar 

  2. R. Gauvin, M. Chibani, and P. Lafontaine, J. Reinf. Plast. Compos., 6, 367 (1987).

    Article  CAS  Google Scholar 

  3. S. L. and R. Gauvin, J. Reinf. Plast. Compos., 10, 314 (1991).

    Article  Google Scholar 

  4. T. D. Kim, Compos. Struct., 45, 1 (1999).

    Article  Google Scholar 

  5. T. D. Kim, Compos. Struct., 49, 21 (2000).

    Article  Google Scholar 

  6. V. V. Vasiliev, V. A. Barynin, and A. F. Rasin, Compos. Struct, 54, 361 (2001).

    Article  Google Scholar 

  7. S. M. Huybrechts, T. E. Meink, P. M. Wegner, and J. M. Ganley, Composites Part A, 33, 155 (2002).

    Article  Google Scholar 

  8. D. Ha and S. W. Tsai, J. Compos. Mater, 37, 287 (2003).

    Article  Google Scholar 

  9. V. V. Vasiliev and A. F. Razin, Compos. Struct., 76, 182 (2006).

    Article  Google Scholar 

  10. A. Ehsani and J. Rezaeepazhand, Int. J. Mech. Sci., 119, 97 (2016).

    Article  Google Scholar 

  11. R. Eslami-Farsani and A. Shahrabi-Farahani, J. Compos. Mater, 52, 225 (2017).

    Article  Google Scholar 

  12. A. Hammami and B. R. Gebart, Polym. Compos., 21, 28 (2000).

    Article  CAS  Google Scholar 

  13. B. Yenilmez, M. Senan, and E. Murat Sozer, Compos. Sci. Technol, 69, 1710 (2009).

    Article  CAS  Google Scholar 

  14. P. Chun Hae and A. Saouab, J. Compos. Mater, 43, 1877 (2009).

    Article  Google Scholar 

  15. P. Wang, S. Drapier, J. Molimard, A. Vautrin, and J. C. Minni, J. Compos. Mater, 46, 1617 (2011).

    Article  Google Scholar 

  16. K. N. Indira, P. Jyotishkumar, and S. Thomas, Fiber. Polym., 13, 1319 (2012).

    Article  CAS  Google Scholar 

  17. F. J. Hurtado, A. S. Kaiser, A. Viedma, and S. Díaz, J. Sandwich Struct. Mater, 18, 415 (2015).

    Article  Google Scholar 

  18. Y.-A. Kang, S.-H. Oh, and J. S. Park, Fiber. Polym., 16, 1343 (2015).

    Article  CAS  Google Scholar 

  19. J. H. Song, Fiber. Polym., 17, 600 (2016).

    Article  Google Scholar 

  20. A. Ehsan and J. Rezaeepazhand, J. Reinf. Plast. Compos., 35, 1051 (2016).

    Article  Google Scholar 

  21. A. Ehsan and J. Rezaeepazhand, J. Solid Mech., 126 (2017).

  22. A. Hammami, Polym. Compos., 22, 337 (2001).

    Article  CAS  Google Scholar 

  23. D. Modi, N. Correia, M. Johnson, A. Long, C. Rudd, and F. Robitaille, Composites Part A, 38, 1271 (2007).

    Article  Google Scholar 

  24. Q. Govignon, S. Bickerton, and P. A. Kelly, Composites Part A, 41, 45 (2010).

    Article  Google Scholar 

  25. C. Garschke, C. Weimer, P. P. Parlevliet, and B. L. Fox, Composites Part A, 43, 935 (2012).

    Article  CAS  Google Scholar 

  26. K. Han, S. Jiang, C. Zhang, and B. Wang, Composites Part A, 31, 79 (2000).

    Article  Google Scholar 

  27. C. D. Fratta, F. Klunker, and P. Ermanni, Composites Part A, 47, 1 (2013).

    Article  Google Scholar 

  28. A. C. Loos and J. D. MacRae, Compos. Sci. Technol, 56, 273 (1996).

    Article  CAS  Google Scholar 

  29. M. K. Kang and W. I. Lee, Compos. Sci. Technol, 59, 1663 (1999).

    Article  CAS  Google Scholar 

  30. H. Yokoi, N. Masuda, and H. Mitsuhata, J. Mater. Process. Technol, 130, 328 (2002).

    Article  Google Scholar 

  31. I. Attaran, M.Sc. Dissertation, FUM, Masha., 2014.

    Google Scholar 

  32. A. Shojaei, S. R. Ghaffarian, and S. M. H. Karimian, Compos. Struct., 65, 381 (2004).

    Article  Google Scholar 

  33. P. Ferland, D. Guittard, and F. Trochu, Polym. Compos., 17, 149 (1996).

    Article  CAS  Google Scholar 

  34. R. Mathuw, S. G Advani, D. Heider, C. Hoffmann, J. W Gillespie, and B. K. Fink, Polym. Compos., 22, 477 (2001).

    Article  Google Scholar 

  35. ASTM, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”, ASTM International, 2014.

    Google Scholar 

  36. L. P. Kollar and G. S. Springer, “Mechanics of Composite Structures”, Cambridge University Press, 2003.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Rezaeepazhand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsani, A., Rezaeepazhand, J. & Attaran, I. Fabrication of Laminated Composite Grid Structures Using VIP. Fibers Polym 20, 1909–1917 (2019). https://doi.org/10.1007/s12221-019-1205-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1205-x

Keywords

Navigation