Skip to main content
Log in

An Orthogonal Study of Industrial Scale Colour Fading Process of Cotton Fabric

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Colour fading is now a popular process used for imparting a vintage look to textile and fashion products, which enhances market value because of the current fashion trends. This study examined a non-aqueous colour fading process with the use of oxygen plasma-induced ozone treatment. An industrial scale machine and commercially available red sulpur-dyed cotton fabric (with 0.5 %, 1.5 % and 2.5 % colour depths) were used in this study. Since the colour fading process factors are inter-related to each other, a specific experiment approach, i.e. orthogonal method, was used for obtaining the optimum conditions in an industrial scale colour fading process. Three process factors used in the industrial scale colour fading process, i.e. (i) oxygen gas concentration (%); (ii) amount of water in fabric (%); and (iii) treatment time (minutes), would be studied in this paper. Through the orthogonal method, the optimum conditions for colour fading of the three colour depths of cotton fabric dyed by red sulphur dye were determined and their optimum conditions were same. The optimum conditions of the colour fading of the three colour depths were: (i) 70 % oxygen gas concentration; (ii) 35 % amount of water in fabric; and (iii) 30 minutes treatment time. Although colour fading conditions are the same, the order of importance of these process factors was different. Unlike the conventional colour fading process, oxygen plasma-induced ozone colour fading treatment can achieve uniform and even colour fading effect in the cotton fabric effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 2012 LEVI STRAUSS & CO. Available on line: http://store.levi.com/waterless/index.html. Accessed 14 September 2018.

  2. A. Card, M. A. Moore, and M. Ankeny, AATCC Rev., 5, 23 (2005).

    Google Scholar 

  3. M. Sariisik, AATCC Rev., 4, 24 (2004).

    CAS  Google Scholar 

  4. A. Cavaco-Paulo, Carbohydr. Polym., 37, 273 (1998).

    Article  CAS  Google Scholar 

  5. N. Özdil, E. Özdogan, and T. Öktem, Fibres Text. East. Eur., 11, 58 (2003).

    Google Scholar 

  6. C. W. Kan, H. F. Cheung, and Q. Chan, J. Clean. Prod., 112, 3514 (2016).

    Article  CAS  Google Scholar 

  7. C. W. Kan, C. F. Lam, C. K. Chan, and S. P. Ng, Carbohydr. Polym., 102, 167 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. H. Chen, M. Guo, X. Yao, Z. Luo, K. Dong, Z. Lian, and W. Wei, Fiber. Polym., 19, 722 (2018).

    Article  CAS  Google Scholar 

  9. T. Salem, F. Simon, A. Atef El-Sayed, and M. Salama, Fiber. Polym., 18, 731 (2017).

    Article  CAS  Google Scholar 

  10. F. Emami, S. Shekarriz, Z. Shariatinia, and Z. Moridi Mahdieh, Fiber. Polym., 19, 1014 (2018).

    Article  CAS  Google Scholar 

  11. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, and C. Leys, Surf. Coat. Technol., 202, 3427 (2008).

    Article  CAS  Google Scholar 

  12. C. C. Wan, L. H. Lin, C. W. Chen, and Y. C. Lo, Polymers, 9, Article Number 371 (2017).

    Article  CAS  Google Scholar 

  13. C. Chen, L. Jia, R. Liu, X. Chen, C. Jin, H. Liu, C. Feng, C. Zhang, and Y. Qiu, Fiber. Polym., 17, 1181 (2016).

    Article  CAS  Google Scholar 

  14. J. B. Zhang, Z. Zheng, Y. N. Zhang, J. W. Feng, and J. H. Li, J. Hazard. Mater., 154, 506 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. H. Khan, N. Ahmad, A. Yasar, and R. Shahid, Pol. J. Environ. Stud., 19, 83 (2010).

    CAS  Google Scholar 

  16. H. A. Eren and D. Ozturk, Text. Res. J., 81, 512 (2010).

    Article  CAS  Google Scholar 

  17. H. H. Piccoli, A. U. U. de Souza, and S. M. A. G. U. de Souza, Ozone: Sci. Eng., 37, 170 (2015).

    Article  CAS  Google Scholar 

  18. M. Ghoranneviss, B. Moazzenchi, S. Shahidi, A. Anvari, and A. Rashidi, Plasma Process Polym., 3, 316 (2006).

    Article  CAS  Google Scholar 

  19. M. Ghoranneviss, S. Shahidi, B. Moazzenchi, A. Anvari, and A. Rashidi, Surf. Coat. Technol., 201, 4926 (2007).

    Article  CAS  Google Scholar 

  20. C. W. Kan, H. F. Cheung, and F. M. Kooh, Fiber. Polym., 18, 767 (2017).

    Article  CAS  Google Scholar 

  21. H. F. Cheung, Y. S. Lee, C. W. Kan, C. W. M. Yuen, and J. Yip, Appl. Mech. Mater., 387, 131 (2013).

    Article  CAS  Google Scholar 

  22. G2 Technology. Available on line: https://www.jeanologia.com/portfolio/g2-prueba/ Accessed 14 September 2018.

  23. C. E. Zhou, C. W. Kan, and C. W. M. Yuen, Cellulose, 22, 3465 (2015).

    Article  CAS  Google Scholar 

  24. C. W. Kan, Fiber. Polym., 8, 629 (2007).

    Article  CAS  Google Scholar 

  25. C. E. Zhou and C. W. Kan, Cellulose, 22, 879 (2015).

    Article  CAS  Google Scholar 

  26. D. Zhong, Y. H. Liu, N. T. Cheung, C. W. Kan, and H. Chua, Processes, 6, Article Number 81 (2018).

    Article  CAS  Google Scholar 

  27. C. L. Chong, S. Q. Li, and K. W. Yeung, J. Soc. Dyer. Colour., 108, 528 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-wai Kan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yh., To, C.Km., Cheung, Hy. et al. An Orthogonal Study of Industrial Scale Colour Fading Process of Cotton Fabric. Fibers Polym 20, 588–594 (2019). https://doi.org/10.1007/s12221-019-1007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1007-1

Keywords

Navigation