Skip to main content
Log in

Plasma-assisted surface modification of polyester fabric for developing halochromic properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the field of textiles, introducing pH-sensitive dyes onto fibrous materials is a promising approach for the development of flexible sensor. In this study, poly(ethylene terephthalate) (PET) textile surface with halochromic properties was fabricated by plasma-assisted sol-gel coating, followed by immobilization of two different azo pH-indicator dyes; namely Brilliant yellow and Congo red by conventional printing technique of fabrics. 3-aminopropyltriethoxysilane (APTES) was used as a coupling agent for attaching the pH-sensitive dyes through its terminal amines. The surface immobilization of APTES on PET fabric was conducted by the pad-dry-cure method. Moreover, the influence of oxygen plasma pre-treatment and the method of post-treatment either by oxygen plasma or by thermal treatment on the stability of sol-gel based matrix was investigated. The morphology and chemistry of 3-aminopropyltriethoxysilane coated PET surfaces were examined by using surface sensitive methods including electrokinetic and time-dependent contact angle measurements as well as X-ray photoelectron spectroscopy (XPS). In addition, fastness tests of the printed fabrics and color strength were carried out to assess the effectiveness of the fabric surface modification. Results indicate that sol-gel matrix exhibited a more stability by thermal post-treatment at 150 C for 5 min. Also, the results revealed that the printed fabrics with halochromic properties demonstrated sufficient stability against leaching by washing. The current work opens up a novel opportunity to develop flexible sensors based on fibrous materials, which have the potential to be employed in variable industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Matilla, “Intelligent Textiles and Clothing”, Cambridge Woodhead, 2006.

    Book  Google Scholar 

  2. A. T. D. Jocic, P. Glampedaki, and M. M. C. G. Warmoeskerken, Mat. Tech. Adv. Perf. Mat., 24, 14 (2009).

    CAS  Google Scholar 

  3. L. Van der Schueren and K. De Clerck, Text. Res. J., 80, 590 (2010).

    Article  Google Scholar 

  4. E. Osti, Annals of Burns and Fire Disaster, 21, 73 (2008).

    CAS  Google Scholar 

  5. P. Bamfield, “Chromic Phenomena Technological Applications of Color Chemistry”, Cambridge: Royal Society of Chemistry, 2001.

    Google Scholar 

  6. L. Van der Schueren and K. De Clerck, Color. Technol., 128, 82 (2012).

  7. L. Van der Schueren and K. De Clerck, Int. J. Cloth. Sci. Technol., 23 (2011).

    Google Scholar 

  8. R. Shishoo, “Plasma Technologies for Textiles”, Elsevier, 2007.

    Book  Google Scholar 

  9. J. Scheirs and T. E. Long, “Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters”, John Wiley & Sons, 2005.

    Google Scholar 

  10. M. Mokbul Hossain, A. S. Herrmann, and D. Hegemann, Plasma Process. Polym., 4, Issue Supplement S1, S1068–S1074, April 2007.

    Article  Google Scholar 

  11. P. Glampedaki, V. Dutschk, D. Jocic, and Marijn M. C. G. Warmoeskerken, Biotechnol. J., 6, 1219 (2011).

    Article  CAS  Google Scholar 

  12. K. Narushima, N. Yamashita, M. Fukuoka, N. Inagaki, Y. Isono, and M. Rafiqul Islam, Jpn. J. Appl. Phys., 46, 4238 (2007).

  13. P. Xu, W. Wang, and S.-L. Chen, Melliand International, 11, 56 (2005).

    CAS  Google Scholar 

  14. M. P. Franco Ferrero, Appl. Surf. Sci., 275, 201/207 (2013).

  15. T. Textor, Th. Bahners, and E. Schollmeyer, “Coating Wool and Silk by Sol-Gel Technique”, 10th Int. Wool Textile Research Conference, 26. November-1. December 2000.

    Google Scholar 

  16. R. Krüger, M. J. Bockmeyer, A. Dutschke, and P. C. Löbmann, J. Am. Ceram. Soc., 89, 2080 (2006).

    Google Scholar 

  17. Z. Liuxue, L. Peng, and S. Zhixing, Mater. Chem. Phys., 98, 111 (2006).

    Article  Google Scholar 

  18. M. D. Barankin, E. Gonzalez, S. B. Habib, L. Gao, P. C. Guschl, and R. F. Hicks, Langmuir, 25, 2495 (2009).

    Article  CAS  Google Scholar 

  19. Y.-W. Song, H.-S. Do, H.-S. Joo, D.-H. Lim, S. Kim, and H.-J. Kim, J. Adhes. Sci. Technol., 20, 1357 (2006).

    Article  CAS  Google Scholar 

  20. T. T. Boris Mahltig, “Nanosols and Textiles”, World Scientific Publishing Co. Pte. Ltd., 2008.

    Book  Google Scholar 

  21. Q. Chen, J. Phys. D: Appl. Phys., 35, 2939 (2002).

    Article  CAS  Google Scholar 

  22. T. Salem, M. Nitschke, A. Calvimontes, Rolf-Dieter Hund, and F. Simon, Prog. Org. Coat., 72, 168 (2011).

    Article  CAS  Google Scholar 

  23. S. Bratskaya, D. Marinin, M. Nitschke, D. Pleul, S. Schwarz, and F. Simon, J. Adhes. Sci. Technol., 18, 1173 (2004).

    Article  CAS  Google Scholar 

  24. O. Hakeim, L. El-Gabry, and A. Abou-Okeil, J. Appl. Polym. Sci. 108, 2122 (2008).

    Article  CAS  Google Scholar 

  25. W. X. Ma, C. Zhao, S. Okubayashi, I. Tabata, K. Hisada, and T. Hori, J. Appl. Polym. Sci. 117, 1897 (2010).

    Article  CAS  Google Scholar 

  26. J. Mao and L. Murphy, AATCC Rev., 1, 28 (2001).

    CAS  Google Scholar 

  27. G. Beamson and D. Briggs, “High Resolution XPS of Organic Polymers”, Wiley, 1992.

    Google Scholar 

  28. D. A. Shirley, Phys. Rev. B, 5, 4709 (1972).

    Article  Google Scholar 

  29. V. Dutschk, K. G. Sabbatovskiy, M. Stolz, K. Grundke, and V. M. Rudoy, J. Colloid Interface Sci., 267, 456 (2003).

  30. H. Jacobasch, F. Simon, C. Werner, and C. Bellmann, Technisches Messen, 63, 447 (1996).

    CAS  Google Scholar 

  31. L. W. Miles and W. Leslie, “Textile Printing. Revised”, Society of Dyers and Colourists, 2003.

    Google Scholar 

  32. J. Alvarez and B. Lipp-Symonowicz, Autex Res. J., 3, 72 (2003).

    Google Scholar 

  33. S. Amirshahi and M. Pailthorpe, Dyes Pigment., 26, 121 (1994).

    Article  CAS  Google Scholar 

  34. F. Grum and C. Bartelson, “Optical Radiation Measurements, Vol. 2, Color Measurements”, Academic Press, New York, 1980.

    Google Scholar 

  35. T. Salem, D. Pleul, M. Nitschke, M. Müller, and F. Simon, Appl. Surf. Sci., 264, 286 (2013).

    Article  CAS  Google Scholar 

  36. H. Bubert, X. Ai, S. Haiber, M. Heintze, V. Brüser, E. Pasch, W. Brandl, and G. Marginean, Spectrochim. Acta B, 57, 1601 (2002).

    Article  Google Scholar 

  37. K. C. Rulison, Charlotte, NC, Krüss USA, 1996.

  38. T. Salem, M. Müller, F. Simon, “New Silica-based Nanoparticles to Modify Fabric Surfaces Versatility”, Dresden, 2014.

    Google Scholar 

  39. F. A. Pavan, S. L. Dias, E. C. Lima, and E. V. Benvenutti, Dyes Pigment., 76, 64 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, T., Simon, F., El-Sayed, A.A. et al. Plasma-assisted surface modification of polyester fabric for developing halochromic properties. Fibers Polym 18, 731–740 (2017). https://doi.org/10.1007/s12221-017-6858-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6858-8

Keywords

Navigation