Skip to main content
Log in

Investigation of Parameters for Preparing Nanofiber Yarn via a Stepped Airflow-assisted Electrospinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrospinning is a simple and cost-effective method to prepare fiber with nanometer scale. More importantly, 3D flexible nanofiber yarns that fabricated by electrospinning have shown excellent application prospects in smart textiles, wearable sensors, energy storage devices, tissue engineering, and so on. However, current methods for preparing electrospinning nanofiber yarns had some limitations, including low yarn yield and poor yarn structure. In this paper, a stepped airflow-assisted electrospinning method was designed to prepare continuously twisted nanofiber yarn through introducing stepped airflow into traditional electrospinning system. The stepped airflow could not only help to improve nanofiber yield, but also good for controlling the formed nanofibers to be deposited in a small area. In addition, the experimental methods of single factor variables were used to study the effects of stepped airflow pressure, applied voltage, spinning distance, solution flow rate, air pumping volume and friction roller speed on nanofiber yarn yield, nanofiber diameter, yarn twist and mechanical property. The results showed that prepared nanofiber yarns exhibited perfect morphologies and the yield of nanofiber yarn could reach to a maximum of 4.207 g/h. The breaking strength and elongation at break of the prepared yarn could reach to 23.52 MPa and 30.61 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Veleirnho, M. F. Rei, and J. A. Lopes-DA-Silva, J. Polym. Sci. Part B: Polym. Phys., 46, 460 (2008).

    Article  CAS  Google Scholar 

  2. K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, J. Polym. Sci. Part B: Polym. Phys., 41, 1256 (2003).

    Article  CAS  Google Scholar 

  3. Y. Dong, F. Li, X. Zhao, B. Cheng, W. Kang, and G. Cui, J. Ind. Text., doi.org/10.1177/1528083717725115 (2017).

    Google Scholar 

  4. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis, Adv. Mater., 15, 1161 (2003).

    Article  CAS  Google Scholar 

  5. A. F. Lotus, E. T. Bender, E. A. Evans, R. D. Ramsier, D. H. Reneker, and G. G. Chase, J. Appl. Phys., 103, 024910 (2008).

    Article  CAS  Google Scholar 

  6. X. P. Zhuang, K. F. Jia, B. W. Cheng, X. Feng, S. J. Shi, and B. Zhang, Chem. Eng. J., 237, 308 (2014).

    Article  CAS  Google Scholar 

  7. Y. M. Zhou, J. X. He, H. B. Wang, N. Nan, K. Qi, and S. Z. Cui, e-Polymers, 17, 249 (2017).

    Article  CAS  Google Scholar 

  8. T. Yan, Z. Wang, Y. Q. Wang, and Z. J. Pan, Mater. Des., 143, 214 (2018).

    Article  CAS  Google Scholar 

  9. M. Tebyetekerwa, Z. Xu, W. L. Li, X. P. Wang, I. Marriam, S. J. Peng, S. Ramkrishna, S. Y. Yang, and M. F. Zhu, ACS Appl. Energy. Mater., 1, 377 (2018).

    Article  CAS  Google Scholar 

  10. Y. B. Wu, L. Wang, B. L. Guo, and P. X. Ma, ACS Nano, 11, 5646 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Y. M. Zhou, J. X. He, H. B. Wang, K. Qi, N. Nan, X. L. You, W. L. Shao, L. D. Wang, B. Ding, and S. Z. Cui, Sci. Rep., 7, 12949 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. Smit, U. Buttner, and R. D. Sanderson, Polymer, 46, 2419 (2005).

    Article  CAS  Google Scholar 

  13. J. X. He, Y. M. Zhou, K. Qi, L. D. Wang, P. P. Li, and S. Z. Cui, Fiber. Polym., 14, 1857 (2013).

    Article  CAS  Google Scholar 

  14. N. Li, Q. Hui, H. Xue, and J. Xiong, Mater. Lett., 79, 245 (2012).

    Article  CAS  Google Scholar 

  15. J. X. He, K. Qi, L. D. Wang, Y. M. Zhou, R. T. Liu, and S. Z. Cui, Fiber. Polym., 16, 1319 (2015).

    Article  CAS  Google Scholar 

  16. F. Dabirian and S. A. Hosseini, Fibers Text. East. Eur., 17, 74 (2009).

    Google Scholar 

  17. W. E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, and S. Ramakrishna, Polymer, 48, 3400 (2007).

    Article  CAS  Google Scholar 

  18. U. Ali, Y. Zhou, X. Wang, and T. Lin, J. Text. I., 103, 80 (2012).

    Article  CAS  Google Scholar 

  19. L. Tian, T. Yan, and Z. J. Pan, J. Mater. Sci., 50, 7137 (2015).

    Article  CAS  Google Scholar 

  20. M. N. Shuakat and T. Lin, Rsc Adv., 5, 33930 (2015).

    Article  CAS  Google Scholar 

  21. F. Zuo, D. H. Tan, Z. F. Wang, S. Jeung, C. W. Macosko, and F. S. Bates, ACS Macro. Lett., 2, 301 (2013).

    Article  CAS  Google Scholar 

  22. N. Hiremath and G. Bhat, Nanosci. Technol., 2, 1 (2015).

    Google Scholar 

  23. X. L. Ma, L. Y. Zhang, J. Tan, Y. X. Qin, H. B. Chen, W. L. He, W. M. Yang, and H. Y. Li, J. Appl. Polym. Sci., 134, 44820 (2017).

    Google Scholar 

  24. J. X. He, L. D. Wang, R. T. Liu, M. J. Zhang, W. L. Tan, and Y. C. Wu, Fiber. Polym., 15, 2283 (2014).

    Article  CAS  Google Scholar 

  25. J. X. He, Y. P. Lian, X. L. Zhang, Y. C. Wu, and R. T. Liu, J. Polym. Sci. Part B: Polym. Phys., 52, 993 (2014).

    Article  CAS  Google Scholar 

  26. P. R. Lord, C. W. Joo, and T. Ashizaki, J. Text. I., 78, 234 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Wang or Jianxin He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, H., He, J. et al. Investigation of Parameters for Preparing Nanofiber Yarn via a Stepped Airflow-assisted Electrospinning. Fibers Polym 19, 2169–2177 (2018). https://doi.org/10.1007/s12221-018-8387-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8387-5

Keywords

Navigation