Skip to main content
Log in

Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to fabricate continuously twisted nanofiber yarns, double conjugate electrospinning had been developed using two pairs of oppositely charged electrospinning nozzles. The principle and process of this novel yarn spinning method were analyzed, and the effect of applied voltage, nozzle distance between positive and negative, solution flow rate and funnel rotating speed on the diameters, twist level and mechanical properties of resultant PAN nanofiber yarns were investigated in this paper. The results indicated that electrospun nanofibers aggregated stably and bundled continuously at the applied voltage of 18 kV, the nozzle distance of 17.5 cm between positive and negative, the overall flow rate of 3.2 ml/h and the flow ratio of 5/3 for positive and negative nozzles. The resultant nanofiber yarns had favorable orientation and uniform twist distribution, and the twist level of nanofiber yarns increased with the increase of the ratio of funnel rotating speed and winding speed. The diameters and mechanical properties of nanofiber yarns depended on their twist level. The diameters of prepared PAN nanofiber yarns ranged from 50 µm to 200 µm, and the strength and elongation of PAN nanofiber yarns at break were 55.70 MPa and 41.31%, respectively, at the twist angle of 41.8 °. This method can be also used to produce multifunctional composite yarns with two or more components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. M. Huang, Y. Z. Zhang, and M. Kotakli, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  2. C. B. Huang, S. L. Chen, C. L. Lai, D. H. Reneker, H. Y. Qiu, Y. Ye, and H. Q. Hou, Nanotechnology, 17, 1558 (2006).

    Article  CAS  Google Scholar 

  3. F. L. Zhou and R. H. Gong, Polym. Int., 57, 837 (2008).

    Article  CAS  Google Scholar 

  4. C. K. Liu, R. J. Sun, K. Lai, C. Q. Sun, and Y. W. Wang, Mater. Lett., 62, 4467 (2008).

    Article  CAS  Google Scholar 

  5. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis, Adv. Mater., 15, 1161 (2003).

    Article  CAS  Google Scholar 

  6. M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, and K. H. Lee, J. Biomed. Mater. Res. B., 72, 117 (2005).

    Article  Google Scholar 

  7. E. Smit, U. Buttner, and R. D. Sanderson, Polymer, 46, 2419 (2005).

    Article  CAS  Google Scholar 

  8. W. E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, and S. Ramakrishna, Polymer, 48, 3400 (2007).

    Article  CAS  Google Scholar 

  9. Z. J. Pan, H. B. Liu, and Q. H. Wan, J. Fiber Bioeng. Inform., 1, 47 (2008).

    Article  Google Scholar 

  10. K. Zhang, X. F. Wang, Y. Yang, L. L. Wang, M. F. Zhu, S. Benjamin, and B. Chu, J. Polym. Sci. Pol. Phys., 48, 1118 (2010).

    Article  CAS  Google Scholar 

  11. Y. Hao, L. Q. Liu, and Z. Zhang, Mater. Lett., 65, 2419 (2011).

    Article  Google Scholar 

  12. A. M. A, S. Nakano, H. Yamane, and Y. Kimura, Macromol. Mater. Eng., 295, 660 (2010).

    Article  Google Scholar 

  13. S. F. Fennessey and R. J. Farris, Polymer, 45, 4217 (2004).

    Article  CAS  Google Scholar 

  14. M. B. Bazbouz, Ph. D. Dissertation, HWU, Edinburgh, 2009.

  15. F. Q. Sun, C. Yao, T. Y. Song, and X. S. Li, J. Text. I., 102, 633 (2011).

    Article  CAS  Google Scholar 

  16. F. Dabirian, S. A. H. Ravandi, R. H. Sanatgar, and J. P. Hinestroza, Fiber. Polym., 12, 610 (2011).

    Article  CAS  Google Scholar 

  17. U. Ali, Y. Q. Zhou, and T. Lin, J. Text. I., 103, 80 (2012).

    Article  CAS  Google Scholar 

  18. H. Pan, L. M. Li, L. Hu, and X. J. Cui, Polymer, 47, 4901 (2006).

    Article  CAS  Google Scholar 

  19. M. S. M. Jad, S. A. H. Ravandi, H. Tavanai, and R. H. Sanatgar, Fiber. Polym., 12, 801 (2011).

    Article  CAS  Google Scholar 

  20. N. Li, Q. Hui, H. Xue, and J. Xiong, Mater. Lett., 79, 245 (2012).

    Article  CAS  Google Scholar 

  21. A. Kilic, F. Oruc, and A. Demir, Text. Res. J., 78, 532 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Zhou, Y., Qi, K. et al. Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning. Fibers Polym 14, 1857–1863 (2013). https://doi.org/10.1007/s12221-013-1857-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1857-x

Keywords

Navigation