Skip to main content
Log in

Effect of Electric Field on the Directly Electrospun Nanofiber Yarns: Simulation and Experimental Study

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electric field plays a key role in electrospinning process for nanofiber and nanofiber yarn producing. The electric field distribution of the yarn manufacturing system is simulated by using finite element method analysis. The effects of electric field distribution and intensity were studied to analyze the influence of the electric field on the electrospun nanofiber yarn surface morphology, mechanical, thermal and water absorption properties. The results show that the morphology and diameters of nanofiber and yarn were obviously affected by the electric field with changing the needle distance and applied voltage, which further influence the mechanical performance of the yarn. The needle distance does not much affect the thermal property of the PSA electrospun yarn, whereas the yarn obtains better thermal resistance properties at voltage of 25 kV. The nanoyarn electrospun and assembled under higher applied voltage is proved to have a better wicking property in our research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999).

    Article  CAS  Google Scholar 

  2. D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 (2008).

    Article  CAS  Google Scholar 

  3. M. Gorji, A. A. A. Jeddi, and A. A. Gharehaghaji, J. Appl. Polym. Sci., 125, 4135 (2012).

    Article  CAS  Google Scholar 

  4. W. Ye, J. Zhu, X. J. Liao, S. H. Jiang, Y. H. Li, H. Fang, and H. Q. Hou, J. Power Sources, 299, 417 (2015).

    Article  CAS  Google Scholar 

  5. N. Iqbal, X. F. Wang, J. L. Ge, J. Y. Yu, H. Y. Kim, S. S. Aldeyab, M. Elnewehy, and B. Ding, Rsc Adv., 6, 52171 (2016).

    Article  CAS  Google Scholar 

  6. X. F. Wang, K. Zhang, M. F. Zhu, H. Yu, Z. Zhou, Y. M. Chen, and B. S. Hsiao, Polymer, 49, 2755 (2008).

    Article  CAS  Google Scholar 

  7. M. N. Shuakat and T. Lin, Rsc Adv., 5, 33930 (2015).

    Article  CAS  Google Scholar 

  8. J. L. Wu, S. Liu, L. P. He, H. S. Wang, C. L. He, C. Y. Fan, and X. M. Mo, Mater. Lett., 89, 146 (2012).

    Article  CAS  Google Scholar 

  9. U. Ali, H. T. Niu, A. Abbas, H. Shao, and T. Lin, Rsc. Adv., 6, 30564 (2016).

    Article  CAS  Google Scholar 

  10. U. Ali, Y. Q. Zhou, X. G. Wang, and T. Lin, J. Text. I., 103, 80 (2011).

    Article  Google Scholar 

  11. A. S. Levitt, C. E. Knittel, R. Vallett, M. Koerner, G. Dion, and C. L. Schauer, J. Appl. Polym. Sci., 134, 44813 (2017).

    Article  Google Scholar 

  12. J. Chvojka, J. P. Hinestroza, and D. Lukas, Fiber. Text. East. Eur., 21, 28 (2013).

    CAS  Google Scholar 

  13. T. Xi and B. J. Xin, Ind. Eng. Chem. Res., 54, 12303 (2015).

    Article  Google Scholar 

  14. Y. Yang, Z. D. Jia, J. N. Liu, Q. Li, L. Hou, L. M. Wang, and Z. C. Guan, J. Appl. Phys., 103, 104307 (2008).

    Article  Google Scholar 

  15. L. Dong, Y. Liu, R. Wang, W. M. Kang, and B. W. Cheng, J. Fiber. Bioeng. Infor., 3, 117 (2010).

    Article  Google Scholar 

  16. Y. S. Zheng, S. Xie, and Y. C. Zeng, J. Mater. Sci., 48, 6647 (2013).

    Article  CAS  Google Scholar 

  17. A. Sohrabi, P. M. Shaibani, and T. Thundat, Scanning, 35, 183 (2013).

    Article  CAS  Google Scholar 

  18. X. Wang, Y. Liu, C. Zhang, Y. An, X. He, and W. Yang, J. Nanosci. Nanotechno., 13, 4680 (2013).

    Article  CAS  Google Scholar 

  19. Y. S. Zheng and Y. C. Zeng, J. Mater. Sci., 49, 1964 (2014).

    Article  CAS  Google Scholar 

  20. Y. S. Zheng, C. M. Zhuang, R. H. Gong, and Y. C. Zeng, Ind. Eng. Chem. Res., 53, 14876 (2014).

    Article  CAS  Google Scholar 

  21. S. X. Jin, Z. M. Chen, B. J. Xin, T. Xi, and N. Meng, Fiber. Polym., 18, 1160 (2017).

    Article  CAS  Google Scholar 

  22. M. Gorji, A. A. A. Jeddi, A. A. Gharehaghaji, and M. Haghpanahi, Indian J. Fibre. Text., 42, 83 (2017).

    CAS  Google Scholar 

  23. X. F. Wei, Z. H. Xia, S. C. Wong, and A. Baji, Inter. J. Exper. Comput. Biom., 1, 45 (2009).

    Article  Google Scholar 

  24. W. J. Chen, B. J. Xin, and X. J. Wu, J. Ind. Text., 44, 159 (2013).

    Google Scholar 

  25. Z. M. Chen, B. J. Xin, X. J. Wu, X. F. Wang, and W. P. Du, Fiber. Text. East. Eur., 94, 21 (2012).

    Google Scholar 

  26. F. L. Zhou. R. H. Gong, and I. Porat, Polym. Eng. Sci., 49, 2475 (2009).

    Article  CAS  Google Scholar 

  27. F. L. Zhou, R. H. Gong, and I. Porat, J. Appl. Poly. Sci., 115, 2591 (2010).

    Article  CAS  Google Scholar 

  28. Y. Yang, Z. Jia, Q. Li, and L. Hou, IEEE Trans. Dielectr. Electr. Insul., 17, 1592 (2010).

    Article  Google Scholar 

  29. M. Gorji and B. Roohollah, Indian J. Fibre. Text., 41, 318 (2016).

    CAS  Google Scholar 

  30. J. Shi, D. Jia, B. W. Cheng, and W. M. Kang, Adv. Mater. Res., 332, 1343 (2011).

    Google Scholar 

  31. I. Greenfeld, K. Fezzaa, M. H. Rafailovich, and E. Zussman, Macromolecules, 45, 3616 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binjie Xin or Yuansheng Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Xin, B., Zheng, Y. et al. Effect of Electric Field on the Directly Electrospun Nanofiber Yarns: Simulation and Experimental Study. Fibers Polym 19, 116–124 (2018). https://doi.org/10.1007/s12221-018-7734-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7734-2

Keywords

Navigation