Skip to main content
Log in

Surface Modification of Basalt Fibers by Nanostructured Silica Aerogel

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Basalt fibers were surface modified by a new method using nanostructured porous silica aerogel via sol-gel process followed by ambient pressure drying method. FTIR, FE-SEM, and nitrogen adsorption analysis were used for characterization of silica aerogel particles which proved their mesoporous structure with pore size of 7 nm, high porosity and low density. FTIR spectra indicated the formation of silica aerogel on the basalt fibers surface. SEM analysis proved the surface modification of basalt fibers and quantitative measurement showed an increase of 2-fold in the surface roughness compared to unmodified surface fibers. A decrease of 42 % in the density of the surface modified basalt fibers was observed. Also, acoustical properties measurement showed that sound absorption coefficient was increased by 25 %. The obtained results show that silica aerogel structure can affect the physical properties of surface modified basalt fibers. Two silica aerogels with different density and porosity were used in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Shi, L. Wang, and J. Liu, Mater. Lett., 60, 3718 (2006).

    Article  CAS  Google Scholar 

  2. H. X. Zhang, X. D. He, and F. He, J. Alloys Compd., 469, 366 (2009).

    Article  CAS  Google Scholar 

  3. D. Ge, L. Yang, Y. Li, and J. Zhao, J. Non-Cryst. Solids, 355, 2610 (2009).

    Article  CAS  Google Scholar 

  4. I. Smirnova, S. Suttiruengwong, and W. Arlt, J. Non-Cryst. Solids, 350, 54 (2004).

    Article  CAS  Google Scholar 

  5. S. O. Kucheyev, A. V. Hamza, J. H. Satcher, and M. A. Worsley, Acta Mater., 57, 3472 (2009).

    Article  CAS  Google Scholar 

  6. A. C. Pierre and G. M. Pajonk, Chem. Rev., 102, 4243 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. K. W. Oh, D. K. Kim, and S. H. Kim, Fiber. Polym., 10, 731 (2009).

    Article  CAS  Google Scholar 

  8. Z. Talebi, A. Mousavi Shoushtari, A. R. Bahramian, and M. Abdouss, J. Ind. Eng. Chem., 21, 797 (2015).

    Article  CAS  Google Scholar 

  9. K. A. D. Obrey, K. V. Wilson, and D. A. Loy, J. Non-Cryst. Solids, 357, 3435 (2011).

    Article  CAS  Google Scholar 

  10. A. Fidalgo, J. P. S. Farinha, J. M. G. Martinho, and L. M. Ilharco, J. Mater. Chem., A., 1, 12044 (2013).

    Article  CAS  Google Scholar 

  11. H. Wu, Y. Liao, Y. Ding, H. Wang, Ch. Peng, and Sh. Yin, Heat Transfer Eng., 35, 1061 (2014).

    Article  CAS  Google Scholar 

  12. Z. Zhang, J. Shen, X. Ni, G. Wu, B. Zhou, M. Yang, X. Gu, M. Qian, and Y. Wu, J. Macromol. Sci., Part A Pure Appl. Chem., 43, 1663 (2006).

    Article  CAS  Google Scholar 

  13. J. Liu, X. Wang, F. Shi, and J. Luo, Adv. Mater. Res., 534, 106 (2012).

    Article  CAS  Google Scholar 

  14. Z. Talebi, A. Mousavi Shoushtari, A. R. Bahramian, and M. Abdouss, Fiber. Polym., 15, 2154 (2014).

    Article  CAS  Google Scholar 

  15. S. Chakraborty, A. A. Pisal, V. K. Kothari, and A. Venkateswara Rao, Adv. Mater. Sci. Eng., 2016, Article ID 2495623 (2016).

  16. B. Wei, Sh. Song, and H. Cao, Mater. Des., 32, 4180 (2011).

    Article  CAS  Google Scholar 

  17. B. Wei, H. Cao, and Sh. Song, Composites Part A, 42, 22 (2011).

    Article  CAS  Google Scholar 

  18. Y. Min, Y. Fang, X. Huang, Y. Zhu, W. Li, J. Yuan, L. Tan, Sh. Wang, and Zh. Wu, Appl. Surf. Sci., 346, 497 (2015).

    Article  CAS  Google Scholar 

  19. S. Safi, A. Zadhoush, and M. Masoomi, Polym. Compos., 37, 91 (2016).

    Article  CAS  Google Scholar 

  20. H. Najafi, A. Zadhoush, Z. Talebi, and S. P. Rezazadeh Tehrani, Polym. Compos., doi:10.1002/pc.24312 (2017).

    Google Scholar 

  21. J. Chen, Y. Zhu, Q. Ni, Y. Fu, and X. Fu, Appl. Surf. Sci., 321, 103 (2014).

    Article  CAS  Google Scholar 

  22. P. Soltani, M. Azimian, A. Wiegmann, and M. Zarrebini, J. Sound Vib., 426, 1 (2018).

    Article  Google Scholar 

  23. Z. Talebi, A. Mousavi Shoushtari, M. Abdouss, and A. R. Bahramian, J. Non-Cryst. Solids, 376, 30 (2013).

    Article  CAS  Google Scholar 

  24. Z. Mazrouei-Sebdani and A. Khoddami, Prog. Org. Coat., 72, 638 (2011).

    Article  CAS  Google Scholar 

  25. P. Soltani and M. Zerrebini, Text. Res. J., 82, 875 (2012).

    Article  CAS  Google Scholar 

  26. F. Shahani, P. Soltani, and M. Zarrebini, J. Eng. Fibers Fabr., 9, 84 (2014).

    Google Scholar 

  27. S. Motahari, H. Javadi, and A. Motahari, J. Mater. Civ. Eng., 27, 1 (2015).

    Google Scholar 

  28. Yu. K. Akimo, Instrum. Exp. Tech., 46, 287 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Talebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, Z., Habibi, N. & Zadhoush, A. Surface Modification of Basalt Fibers by Nanostructured Silica Aerogel. Fibers Polym 19, 1843–1849 (2018). https://doi.org/10.1007/s12221-018-7710-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7710-5

Keywords

Navigation