Skip to main content
Log in

Influence of the Processing Parameters on the Characteristics of Spherical Bacterial Cellulose

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Bacterial Cellulose (BC) biosynthesized under agitated conditions can produce hydrogels with spherical shapes and the processing parameters govern this formation of BC hydrogels. The variations of these parameters cause different results in the formation of spherical BC and it is relevant to evaluate these effects. Carbon source, inoculum concentration, volume of the culture medium, stirring speed and incubation temperature were the processing parameters evaluated in this work. Therefore, the results obtained were characterized in terms of dry mass production, water uptake and sphericity of the spherical BC. To do so, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were employed as tools for morphological and chemical evaluations. Among the parameters analyzed, the carbon source had the greatest effect on the production of dry mass and water uptake. Glycerol had the greatest growing rate, generating a higher dry mass production with spherical and homogeneous bodies with excellent water absorption indexes. Furthermore, the morphological analysis of BC revealed a typical structure, with high crystallinity index and the presence of typical functional groups. These results indicate a path for the optimized and controlled production of spherical BC, allowing it to be used in many applications, such as enzyme immobilization, water treatment, bone regeneration, spherical cancer model, as adsorption agent and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Chawla, I. B. Bajaj, S. A. Survase, and R. S. Singhal, Food Technol. Biotechnol., 47, 107 (2009).

    CAS  Google Scholar 

  2. D. R. Nobles, D. K. Romanovicz, and R. M. Brown Jr., Plant Physiol., 127, 529 (2001).

    Article  CAS  Google Scholar 

  3. W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown Jr., Biomacromolecules, 8, 1 (2007).

    Article  CAS  Google Scholar 

  4. I. Siró and D. Plackett, Cellulose, 17, 459 (2010).

    Article  Google Scholar 

  5. D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, and D. Gray, Angew. Chem. Int. Ed., 50, 5438 (2011).

    Article  CAS  Google Scholar 

  6. K. Watanabe, M. Tabuchi, Y. Morinaga, and F. Yoshinaga, Cellulose, 5, 187 (1998).

    Article  CAS  Google Scholar 

  7. Y. Hu and J. M. Catchmark, Biomacromolecules, 11, 1727 (2010).

    Article  CAS  Google Scholar 

  8. W. Czaja, D. Romanovicz, and R. M. Brown, Cellulose, 11, 403 (2004).

    Article  CAS  Google Scholar 

  9. R. Brandes, C. Carminatti, A. Mikowski, H. Al-Qureshi, and D. Recouvreux, J. Nano Res., 45, 142 (2017).

    Article  Google Scholar 

  10. W. Hu, S. Chen, J. Yang, Z. Li, and H. Wang, Carbohydr. Polym., 101, 1043 (2014).

    Article  CAS  Google Scholar 

  11. S. Gea, C. T. Reynolds, N. Roohpour, B. Wirjosentono, N. Soykeabkaew, E. Bilotti, and T. Peijs, Bioresour. Technol., 102, 9105 (2011).

    Article  CAS  Google Scholar 

  12. H. Zhu, S. Jia, H. Yang, Y. Jia, L. Yan, and J. Li, Biotechnol. Biotechnol. Eq., 25, 2233 (2011).

    Article  Google Scholar 

  13. F. D. E. Goelzer, P. C. S. Faria-tischer, J. C. Vitorino, M. Sierakowski, and C. A. Tischer, Mater. Sci. Eng., C, 29, 546 (2009).

    Article  CAS  Google Scholar 

  14. J. Zhang, T. J. Elder, Y. Pu, and A. J. Ragauskas, Carbohydr. Polym., 69, 607 (2007).

    Article  CAS  Google Scholar 

  15. S. Wu and Y. Lia, J. Mol. Catal., B Enzym., 54, 103 (2008).

    Article  CAS  Google Scholar 

  16. Y. Wan, F. Zhang, C. Li, G. Xiong, Y. Zhu, and H. Luo, J. Mater. Chem. A, 3, 24389 (2015).

    Article  CAS  Google Scholar 

  17. Z. Yan, S. Chen, H. Wang, B. Wang, and J. Jiang, Carbohydr. Polym., 74, 659 (2008).

    Article  CAS  Google Scholar 

  18. C. J. Grande, F. G. Torres, C. M. Gomez, and M. C. Bañó, Acta Biomater., 5, 1605 (2009).

    Article  CAS  Google Scholar 

  19. R. Brandes, L. Souza, V. Vargas, E. Oliveira, A. Mikowski, C. Carminatti, H. Al-Qureshi, and D. Recouvreux, J. Nano Res., 43, 73 (2016).

    Article  CAS  Google Scholar 

  20. M. M. Abeer, M. C. I. M. Amin, and C. Martin, J. Pharm. Pharmacol., 66, 1047 (2014).

    CAS  Google Scholar 

  21. M. C. I. M. Amin, N. Ahmad, N. Halib, and I. Ahmad, Carbohydr. Polym., 88, 465 (2012).

    Article  Google Scholar 

  22. D. O. S. Recouvreux, C. R. Rambo, F. V Berti, C. A. Carminatti, R. V Antônio, and L. M. Porto, Mater. Sci. Eng. C, 31, 151 (2011).

    Article  CAS  Google Scholar 

  23. S. M. A. S. Keshk and K. Sameshima, Afr. J. Biotechnol., 4, 478 (2005).

    CAS  Google Scholar 

  24. M. L. Cacicedo, M. C. Castro, I. Servetas, L. Bosnea, K. Boura, P. Tsafrakidou, A. Dima, A. Terpou, A. Koutinas, and G. R. Castro, Bioresour. Technol., 213, 172 (2016).

    Article  CAS  Google Scholar 

  25. S. T. Schrecker and P. A. Gostomski, Biotechnol. Lett., 27, 1435 (2005).

    Article  CAS  Google Scholar 

  26. L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  27. A. Adnan, G. R. Nair, M. C. Lay, J. E. Swan, and R. Umar, Malaysian J. Anal. Sci., 19, 1131 (2015).

    Google Scholar 

  28. C. Zhong, G. C. Zhang, M. Liu, X. T. Zheng, P. P. Han, and S. R. Jia, Appl. Microbiol. Biotechnol., 97, 6189 (2013).

    Article  CAS  Google Scholar 

  29. A. Krystynowicz, W. Czaja, A. W. Jezierska, M. G. Miskiewicz, M. Turkiewicz, and S. Bielecki, J. Ind. Microbiol. Biotechnol., 29, 189 (2002).

    Article  CAS  Google Scholar 

  30. H. Yamamoto, F. Horii, and A. Hirai, Cellulose, 3, 229 (1996).

    Article  CAS  Google Scholar 

  31. Y. Hu, J. M. Catchmark, and E. A. Vogler, Biomacromolecules, 14, 3444 (2013).

    Article  CAS  Google Scholar 

  32. A. Zywicka, D. Peitler, R. Rakoczy. A. F. Junka, and K. Fijalkowski, Appl. Biochem. Biotechnol., 180, 805 (2016).

    Article  CAS  Google Scholar 

  33. M. Seifert, S. Hesse, V. Kabrelian, and D. Klemm, J. Polym. Sci. A, 42, 463 (2004).

    Article  CAS  Google Scholar 

  34. Y. Uraki, J. Nemoto, H. Otsuka, Y. Tamai, J. Sugiyama, T. Kishimoto, M. Ubukata, H. Yabu, M. Tanaka, and M. Shimomura, Carbohydr. Polym., 69, 1 (2007).

    Article  CAS  Google Scholar 

  35. H. C. Flemming and J. Wingender, Nat. Rev. Microbiol., 8, 623 (2010).

    Article  CAS  Google Scholar 

  36. R. L. Oliveira, J. G. Vieira, H. S. Barud, R. M. N. Assunção, G. R. Filho, S. J. L. Ribeiro, and Y. Messadeqq, J. Braz. Chem. Soc., 26, 1861 (2015).

    CAS  Google Scholar 

  37. C. Tokoh, K. Takabe, M. Fujita, and H. Saiki, Cellulose, 5, 249 (1998).

    Article  CAS  Google Scholar 

  38. R. Auta, G. Adamus, M. Kwiecien, I. Radecka, and P. Hooley, Afr. J. Biotechnol., 16, 470 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Brandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandes, R., de Souza, L., Vanin, D.V.F. et al. Influence of the Processing Parameters on the Characteristics of Spherical Bacterial Cellulose. Fibers Polym 19, 297–306 (2018). https://doi.org/10.1007/s12221-018-7679-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7679-5

Keywords

Navigation