Skip to main content
Log in

Rutile Titania-Filled Polyethylene Composites: Microstructural Evolution, Empirical Modeling of the Mechanical Properties and Comparative Validation of the Quasi-Elastic Modulus Using Micromechanical Models

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The effect of filling Low Density Polyethylene with mesoparticles of Rutile Titania for mechanical properties’ improvement was experimentally and numerically studied. Experimental techniques used were scanning electron microscopy, bi-axial tensile and three-point bending tests. Modeling techniques used were Least Square Polynomial Regressions, “Guth’s, Kerner’s, Hirsch’s, Halpin-Tsai’s, Halpin-Tsai-Nielsen’s and Modified Halpin-Tsai-Nielsen’s Models” encoded in Python-Shell. The prediction accuracy of the regression models was computationally validated with various statistical tests in Originlab Pro software package. The results showed micromechanics of deformation of the composites to be pronounced with craze-induced interconnected microvoids’ coalescence and dewetting-induced particle debonding at high volume fraction of filler. The composites delivered superlative enhancements of 309.85, 48.10, 12.28 and 15.12 % in tensile strength, tensile modulus, flexural strength and flexural modulus, respectively. Correspondingly, from least square regression models, specific polynomial orders showed correlations with experimental data at 0.05 null hypothesis rejection. The trend of regression model’s prediction for the quasi-elastic modulus agrees with that of the micromechanical models. However, underpredictions by most micromechanical models were attributed to the influence of unconsidered processing parameters on the models. Overall, the modified Halpin-Tsai-Nielsen evinced the greatest correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sutiono, A. M. Tripathi, H. M. Chen, C. H. Chen, W. N. Su, L. Y. Chen, H. Dai, and B. J. Hwang, ACS Sustain. Chem. Eng., 4, 5963 (2016).

    Article  CAS  Google Scholar 

  2. W. L. Wang, J. Y. Park, V. H. Nguyen, E. M. Jin, and H. B. Gu, Ceram. Int., 42, 598 (2016).

    Article  CAS  Google Scholar 

  3. D. M. Panaitescu, C. Radovici, M. Ghiurea, H. Paven, and M. D. Iorga, Polym. Plast. Technol. Eng., 50, 196 (2011).

    Article  CAS  Google Scholar 

  4. Y. Zhang, S. Li, F. Huang, F. Wang, W. Duan, J. Li, Y. Shen, and A. Xie, Russ. J. Phys. Chem. A+., 86, 413 (2012).

    Article  CAS  Google Scholar 

  5. Q. F. Xu, Y. Liu, F. J. Lin, B. Mondal, and A. M. Lyons, ACS Appl. Mater. Interfaces, 5, 8915 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. D. B. Malpass, “Introduction to Industrial Polyethylene: Properties, Catalysts, and Processes”, Scrivener, Beverly, 2010.

    Book  Google Scholar 

  7. Polyethylene Plastic-Complete Guide, Avaliable from https://omnexus.specialchem.com/selection-guide/polyethyleneplastic, Accessed September 23, 2017.

  8. S. A. Ghani, S. J. Tan, and T. S. Yeng, Polym. Plast. Technol. Eng., 52, 495 (2013).

    Article  CAS  Google Scholar 

  9. H. U. Zaman, M. A. Khan, and R. A. Khan, Compos. Interface, 18, 685 (2011).

    Article  CAS  Google Scholar 

  10. S. Sahi, H. Djidjelli, and A. Boukerrou, J. Polym. Eng., 36, 261 (2016).

    Article  CAS  Google Scholar 

  11. T. Mekonnen, P. Mussone, H. Khalil, and D. Bressler, J. Mater. Chem., 1, 13379 (2013).

    Article  CAS  Google Scholar 

  12. G. Ren, Z. Yu, and R. Xiong, J. Wuhan. Univ. of Technol., 30, 37 (2015).

    Article  CAS  Google Scholar 

  13. D. Chang, Y. Huang, G. Tang, J. Huang, and W. Huang, J. Thermoplast. Compos. Mater., 27, 783 (2014).

    Article  CAS  Google Scholar 

  14. M. Romero-Sáez, L. Y. Jaramillo, R. Saravanan, N. Benito, E. Pabón, E. Mosquera, and F. Gracia, Express. Polym. Lett. 11, 852 (2017).

    Article  CAS  Google Scholar 

  15. M. Yu, R. Huang, C. He, Q. Wu, and X. Zhao, Int. J. Polym. Sci., 2016, Ariticle ID 2520670 (2016).

    Google Scholar 

  16. M. Sabetzadeh, R. Bagheri, and M. Masoomi, J. Thermoplast. Compos. Mater., 27, 1022 (2014).

    Article  CAS  Google Scholar 

  17. M. O. Steinhauser and S. Hiermaier, Int. J. Mol. Sci., 10, 5135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Pietrzyk, L. Madej, L. Rauch, and D. Szeliga, “Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations”, Butterworth-Heinemann, Oxford, 2015.

    Google Scholar 

  19. M. Shtein, R. Nadiv, N. Lachman, H. D. Wagner, and O. Regev, Compos. Sci. Technol., 87, 157 (2013).

    Article  CAS  Google Scholar 

  20. C. U. Atuanya, C. Nwobi-Okoye, and O. D. Onukwuli, IJMME, 9, 7 (2014).

    Google Scholar 

  21. F. Khademi, M. Akbari, S. M. Jamal, and M. Nikoo, Front. Struct. Civ. Eng., 11, 90 (2017).

    Article  Google Scholar 

  22. D. Ali and S. Sen, J. Mech. Behav. Biomed. Mater., 75, 262 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. C. U. Atuanya, V. S. Aigbodion, S. O. Obiorah, M. Kchaou, and R. Elleuch, J. Assoc. Arab Univ. Basic. Appl. Sci., 21, 45 (2016).

    Google Scholar 

  24. H. A. Metwally, R. V. Ardazishvili, A. N. Severyukhina, A. M. Zaharevich, A. A. Skaptsov, S. B. Venig, G. B. Sukhorukov, and D. A. Gorin, Bionanoscience, 5, 22 (2015).

    Article  Google Scholar 

  25. T. K. Sievers, C. Genre, F. Bonnefond, T. Demars, J. Ravaux, D. Meyer, and R. Podor, Phys. Chem. Chem. Phys., 15, 38 (2013).

    Article  CAS  Google Scholar 

  26. A. Viardin, M. Založnik, Y. Souhar, M. Apel, and H. Combeau, Acta Mater., 122, 386 (2017).

    Article  CAS  Google Scholar 

  27. N. Nakatsuji, Biomater. Sci., 1, 9 (2013).

    Article  CAS  Google Scholar 

  28. ASTM D638-14, “Standard Test Method for Tensile Properties of Plastics”, ASTM International, West Conshohocken, PA, ASTM, 2014.

    Google Scholar 

  29. ASTM D790-15e2, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, ASTM International, West Conshohocken, PA, ASTM, 2015.

    Google Scholar 

  30. Interpret Regression Result: Origin Help Online, Avaliable from http://www.originlab.com/doc/Origin-Help/Interpret-Regression-Result, Accessed September 23, 2017.

  31. R. Whitacre, A. Amiri, and C. Ulven, Ind. Crops and Prod., 77, 232 (2015).

    Article  CAS  Google Scholar 

  32. C. DeArmitt and M. Hancock, “Particulate-Filled Polymer Composites: Filled Thermoplastics” (R. N. Rothon Ed.), Rapra Technology Limited, 2003.

  33. Y. S. Munde and R. B. Ingle, Procedia Technology, 19 (2015).

  34. W. Yan, R. J. T. Lin, and D. Bhattacharyya, Compos. Sci. Technol., 66, 13 (2006).

    Article  CAS  Google Scholar 

  35. P. V. Vasconcelos, F. J. Lino, F. W. Van Hattum, and R. J. Neto, Materials Science Forum Trans Tech Publications, 455, doi:10.4028/www.scientific.net/MSF.455-456.635 (2004).

  36. L. Huang, X. Yang, X. Jia, and D. Cao, Phys. Chem. Chem. Phys., 16, 45 (2014).

    Google Scholar 

  37. D. Arencón and J. I. Velasco, Materials, 2, 2046 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  38. J. Liu, Y. Wang, K. Xiao, and Z. Zhang, Journal of Nanomaterials, 2017, Article ID 5048382 (2017).

    Google Scholar 

  39. J. L. Olajide, I. O. Oladele, O. J. Odeyemi, and S. O. Babarinsa, Tribology in Industry, 39, 3 (2017).

    Article  Google Scholar 

  40. C. Ayranci and J. P. Carey, Polym. Compos., 32, 243 (2011).

    Article  CAS  Google Scholar 

  41. S. Husseinsyah, K. Seong Chun, A. Hadi, and R. Ahmad, J. Vinyl, Addit. Technol., 22, 200 (2014).

    Article  CAS  Google Scholar 

  42. C. Esnaashari, N. Khorasani, M. Entezam and S. Khalili, J. Appl. Polym. Sci., 127, 837 (2013).

    Article  CAS  Google Scholar 

  43. K. C. Yung, J. Wang, and T. M. Wue, J. Reinf. Plast. Compos., 25, 847 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Daramola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daramola, O.O., Olajide, J.L., Babarinsa, S.O. et al. Rutile Titania-Filled Polyethylene Composites: Microstructural Evolution, Empirical Modeling of the Mechanical Properties and Comparative Validation of the Quasi-Elastic Modulus Using Micromechanical Models. Fibers Polym 19, 1347–1358 (2018). https://doi.org/10.1007/s12221-018-1071-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-1071-y

Keywords

Navigation