Skip to main content
Log in

Enhancement biocompatibility of bacterial cellulose membrane via laccase/TEMPO mediated grafting of silk fibroins

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Silk fibroin (SF) has the characteristic of moisture penetrability and biocompatibility. To enhance the biocompatibility of bacterial cellulose (BC), silk fibroin is grafted onto BC membrane using laccase and 2,2′,6,6′-tetramethylpiperidine-N-oxyl (TEMPO). As the model compound of BC, cellobiose is incubated with laccase/TEMPO for disclosing the mechanism of enzymatic oxidation. The structure and property of the composite membranes of SF/BC are investigated by means of FTIR, XPS, DSC, and biocompatibility analysis. The results indicate that cellobiose might react with hexamethylenediamine and form Schiff bases. The concentration of amino group in SF solution noticeably decreased after laccase/TEMPO oxidation, indicating the occurrence of self-crosslinking of SF. After enzymatic grafting of SF, the content of atomic nitrogen on BC surface was increased compared to that of the control. Meanwhile, the composite membrane of SF/BC exhibits more satisfactory biocompatibility compared to BC, and it has potential applications in biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Unalan, O. Colpankan, A. Z. Albayrak, C. Gorgun, and A. S. Urkmez, Mater. Sci. Eng. C, 68, 842 (2016).

    Article  CAS  Google Scholar 

  2. F. Esa, S. M. Tasirin, and N. A. Rahman, Agric. Agric. Sci. Procedia, 2, 113 (2014).

    Article  Google Scholar 

  3. N. Shah, M. Ul-Islam, W. A. Khattak, and J. K. Park, Carbohydr. Polym., 98, 1585 (2013).

    Article  CAS  Google Scholar 

  4. N. Abidi, L. Cabrales, and C. H. Haigler, Carbohydr. Polym., 100, 9 (2014).

    Article  CAS  Google Scholar 

  5. P. R. Chawla, I. B. Bajaj, S. A. Survase, and R. S. Singhal, Food Technol. Biotech., 47, 107 (2009).

    CAS  Google Scholar 

  6. J. M. Rajwade, K. M. Paknikar, and J. K. Kumbhar, Appl. Microbiol. Biotechnol., 99, 2491 (2015).

    Article  CAS  Google Scholar 

  7. Y. Z. Wan, Y. Huang, C. D. Yuan, S. Raman, Y. Zhu, H. J. Jiang, F. He, and C. Gao, Mater. Sci. Eng. C, 27, 855 (2007).

    Article  CAS  Google Scholar 

  8. L. E. Millon and W. K. Wan, J. Biomed. Mater. Res. B, 79B, 245 (2006).

    Article  CAS  Google Scholar 

  9. D. Ciechańska, Fibers Text. East. Eur., 12, 69 (2004).

    Google Scholar 

  10. Z. Cai and G. Yang, J. Appl. Polym. Sci., 1205, 2938 (2011).

    Google Scholar 

  11. Y. X. Chen, X. D. Zhou, Q. F. Lin, and D. F. Jiang, Cellulose, 21, 267 (2014).

    Google Scholar 

  12. Z. Cai and J. Kim, Cellulose, 17, 83 (2010).

    Article  CAS  Google Scholar 

  13. C. L. Qi, P. Wang, L. Cui, C. Deng, Y. Y. Yu, Q. Wang, and X. R. Fan, Appl. Microbiol. Biotechnol., 100, 1713 (2016).

    Article  CAS  Google Scholar 

  14. A. Teimouri, M. Azadi, R. Emadi, J. Lari, and A. N. Chermahini, Polym. Degrad. Stabil., 121, 18 (2015).

    Article  CAS  Google Scholar 

  15. Y. Q. Hong, X. K. Zhu, P. Wang, H. T. Fu, C. Deng, L. Cui, Q. Wang, and X. R. Fan, Appl. Biochem. Biotechnol., 178, 1363 (2016).

    Article  CAS  Google Scholar 

  16. H. Ullah, F. Wahid, H. A. Santos, and T. Khan, Carbohydr. Polym., 150, 330 (2016).

    Article  CAS  Google Scholar 

  17. H. S. Park, M. S. Gong, J. H. Park, S. I. Moon, and I. B. Wall, Acta Biomater., 9, 8962 (2013).

    Article  CAS  Google Scholar 

  18. J. Zhang, H. Huang, R. Ju, K. Chen, and S. Li, Am. J. Surg., 213, 87 (2017).

    Article  Google Scholar 

  19. Q. Fang, D. Chen, Z. Yang, and M. Li, Mater. Sci. Eng. C, 29, 1527 (2009).

    Article  CAS  Google Scholar 

  20. Y. Y. Yu, Q. Wang, J. G. Yuan, X. R. Fan, and P. Wang, Carbohydr. Polym., 153, 463 (2016a).

    Article  CAS  Google Scholar 

  21. D. Jaušovec, R. Vogrinčič, and V. Kokol, Carbohydr. Polym., 116, 74 (2015).

    Article  Google Scholar 

  22. Y. Q. Zhang, W. L. Zhou, W. D. Shen, Y. H. Chen, X. M. Zha, K. Shirai, and K. Kiguchi, J. Biotechnol., 120, 315 (2005).

    Article  CAS  Google Scholar 

  23. M. Tsukada, Y. Goto, G. Freddi, and H. Shiozaki, J. Appl. Polym. Sci., 45, 1189 (1992).

    Article  CAS  Google Scholar 

  24. M. M. Doroodmand and M. G. Kharekani, Chem. Eng. J., 283, 453 (2016).

    Article  CAS  Google Scholar 

  25. P. Wang, C. L. Qi, Y. Y. Yu, J. G. Yuan, L. Cui, G. T. Tang, Q. Wang, and X. R. Fan, Appl. Biochem. Biotechnol., 177, 472 (2015).

    Article  CAS  Google Scholar 

  26. Y. Xu, J. Liu, C. Du, S. Fu, and X. Liu, Prog. Org. Coat., 75, 537 (2012).

    Article  CAS  Google Scholar 

  27. P. Wang, X. K. Zhu, J. G. Yuan, Y. Y. Yu, L. Cui, Y. Duan, Q. Wang, and X. R. Fan, Fiber. Polym., 17, 1323 (2016).

    Article  CAS  Google Scholar 

  28. S. Liebminger, M. Siebenhofer, and G. Guebitz, Bioresour. Technol., 100, 4541 (2009).

    Article  CAS  Google Scholar 

  29. D. Jaušovec, R. Vogrinčič, and V. Kokol, Carbohydr. Polym., 116, 74 (2015).

    Article  Google Scholar 

  30. C. Lai, G. Zeng, D. Huang, M. Zhao, and Z. Wei, Spectrochim. Acta A Mol. Biomol. Spectrosc., 132, 369 (2014).

    Article  CAS  Google Scholar 

  31. A. S. Amarasekara and B. Wiredu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 159, 113 (2016).

    Article  CAS  Google Scholar 

  32. Y. Y. Yu, Q. Wang, J. G. Yuan, X. R. Fan, P. Wang, and L. Cui, Carbohydr. Polym., 137, 549 (2016b).

    Article  CAS  Google Scholar 

  33. Y. Li, Y. Ge, Y. Zhang, A. Zhang, and S. Sun, J. Molecul. Struct., 968, 24 (2010).

    Article  CAS  Google Scholar 

  34. M. Aminian, F. Nabatchian, A. Vaisi-Raygani, and M. Torabi, Anal. Biochem., 434, 287 (2013).

    Article  CAS  Google Scholar 

  35. V. Raghupathy, A. Oommen, and A. Ramachandran, Anal. Biochem., 455, 1 (2014).

    Article  CAS  Google Scholar 

  36. M. A. D. Moraes, G. M. Nogueira, R. F. Weska, and M. M. Beppu, Polymers, 2, 719 (2010).

    Article  Google Scholar 

  37. P. Amornsudthiwat, R. Mongkolnavin, S. Kanokpanont, J. Panpranot, C. S. Wong, and S. Damrongsakkul, Colloids Surf. B-Biointerfaces, 111, 579 (2013).

    Article  CAS  Google Scholar 

  38. V. Dhyani and N. Singh, ACS Appl. Mater. Interfaces, 6, 5005 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Zhang, Q., Wang, P. et al. Enhancement biocompatibility of bacterial cellulose membrane via laccase/TEMPO mediated grafting of silk fibroins. Fibers Polym 18, 1478–1485 (2017). https://doi.org/10.1007/s12221-017-7306-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7306-5

Keywords

Navigation