Skip to main content
Log in

Mechanical behavior of short bagasse fiber reinforced cardanol-formaldehyde composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Synthesize of a thermosetting resin based cardanol from cashew nut shell liquid (CSNL) using poly condensation process as composite matrix was carried out. Locally collected sugarcane bagasse fiber was dried in an oven to remove the moisture content. These fibers were then cut into specific average length of 10 mm and 20 mm and made into two different sets of cardanol based bio-composites of varying concentration of 0, 5, 10, 15 and 20 % by compression moulding process. The mechanical properties were evaluated by means of tensile, flexural and impact in addition to water absorption test. Results had shown the enhancement of the mechanical properties with increase in range of bagasse fiber upto 15 weight % in both the sets. Of the two sets, 20 mm length fiber possesses more strength comparatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Maffezzoli, E. Calo, S. Zurlo, G. Mele, A. Tarzia, and C. Stifani, Compos. Sci. Technol., 64, 839 (2004).

    Article  CAS  Google Scholar 

  2. R. J. Wilson, “The Market for Cashew Kernals and Cashew Nut Shell Liquid” (Tropical Products Institute Report no. G91), Vol. 91, London, 1975.

    Google Scholar 

  3. H. P. Bhunia, R. N. Jana, A. Basak, S. Lenka, and G. B. Nando, J. Appl. Polym. Sci., 36, 391 (1998).

    Article  CAS  Google Scholar 

  4. R. S. Santos, A. A. Souza, M. A. Paoli, and C. M. L. Souza, Compos. Pt. A-Appl. Sci. Manuf., 41, 1123 (2010).

    Article  Google Scholar 

  5. M. A. R. Façanha, S. E. Mazzetto, J. O. B. Carioca, and G. G. de Barros, Fuel, 15, 2416 (2007).

    Google Scholar 

  6. T. T. Minh Tan, Polym. Int., 41, 13 (1996).

    Article  Google Scholar 

  7. A. Balaji, B. Karthikeyan, and C. Sundar Raj, Int. J. ChemTech. Res., 7, 223 (2014).

    CAS  Google Scholar 

  8. V. G. Geethamma, G. Kalaprasad, G. Groeninckx, and S. Thomas, Compos. Pt. A-Appl. Sci. Manuf., 36, 1499 (2005).

    Article  Google Scholar 

  9. A. O’Donnell, M. A. Dweib, and R. P. Wool, Compos. Sci. Technol., 64, 1135 (2004).

    Article  Google Scholar 

  10. C.-T. Hsieh, Y.-J. Pan, C.-W. Lou, C.-L. Huang, Z. I. Lin, J.-M. Liao, and J.-H. Lin, Fiber. Polym., 17, 615 (2016).

    Article  Google Scholar 

  11. O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).

    Article  CAS  Google Scholar 

  12. A. Balaji, B. Karthikeyan, and C. Sundar Raj, J. Chem. Pharm. Res., 7, 573 (2015).

    CAS  Google Scholar 

  13. Y. Xu, Q. Wu, Y. Lei, and F. Yao, Bioresour. Technol., 101, 3280 (2010).

    Article  CAS  Google Scholar 

  14. S. Eichhorn and R. Young, Compos. Sci. Technol., 64, 767 (2004).

    Article  CAS  Google Scholar 

  15. M. Kabir, H. Wang, K. Lau, and F. Cardona, Compos. Pt. B-Eng., 53, 362 (2013).

    Article  CAS  Google Scholar 

  16. W. Hu, M. T. Ton-That, F. Perrin-Sarazin, and J. Denault, Polym. Eng. Sci., 50, 819 (2010).

    Article  CAS  Google Scholar 

  17. M. K. Hossain, M. R. Karim, M. R. Chowdhury, M. A. Imam, M. Hosur, S. Jeelani, and R. Farag, Ind. Crops Prod., 58, 78 (2014).

    Article  CAS  Google Scholar 

  18. E. C. Ramires, J. D. Jr. Megiatto, C. Gardrat, A. Castellan, and E. Frollini, Bioresour Technol., 101, 1998 (2010).

    Article  CAS  Google Scholar 

  19. J. Swaminathan, M. Ramalingam, and N. Sundaraganesan, Spectrochim. Acta Mol. Biomol. Spectrosc., 71, 1776 (2009).

    Article  CAS  Google Scholar 

  20. J. Swaminathan, M. Ramalingam, H. Saleem, V. Sethuraman, and M. T. Noorul Ameen, Spectrochim. Acta Mol. Biomol. Spectrosc., 74, 1247 (2009).

    Article  CAS  Google Scholar 

  21. C. May, “Epoxy Resin-Chemistry and Technology”, 2nd ed., Marcel Dekker, Inc., Vol. 2, pp.52–60, New York, 1988.

    Google Scholar 

  22. S. Ozturk, J. Compos. Mater., 44, 2265 (2010).

    Article  CAS  Google Scholar 

  23. S. Thomas and L. A. Pothan, “Natural Fiber Reinforced Polymer Composite: From Macro to Nano Scale” (Old City Publication), pp.165–180, 2009.

    Google Scholar 

  24. M. Jacob, S. Thomas, and K. T. Varughese, Compos. Sci. Technol., 64, 955 (2004).

    Article  CAS  Google Scholar 

  25. H. Ishida and P. Froimowicz, “Advanced and Emerging Polybenzoxazine Science and Technology”, 1st ed., (Elsevier), pp.528–531, 2017.

    Google Scholar 

  26. S. Joseph, M. S. Sreekala, Z. Oommen, P. Koshy, and S. Thomas, Compos. Sci. Technol., 62, 1857 (2002).

    Article  CAS  Google Scholar 

  27. S. M. S. Riza Wirawan, A. Khalina, and Y. Robiah, Key Eng. Mater., 471-472, 167 (2011).

    Article  Google Scholar 

  28. O. A. Cakir, M. Sarikanat, H. B. Tufekci, C. Demirci, and U. H. Erdoğan, Compos. Pt. B-Eng., 61, 49 (2014).

    Article  Google Scholar 

  29. K. Bilba and M.-A. Arsene, Compos. Pt. A-Appl. Sci. Manuf., 39, 1488 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Balaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, A., Karthikeyan, B., Swaminathan, J. et al. Mechanical behavior of short bagasse fiber reinforced cardanol-formaldehyde composites. Fibers Polym 18, 1193–1199 (2017). https://doi.org/10.1007/s12221-017-7009-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7009-y

Keywords

Navigation