Skip to main content
Log in

Fabrication of electropsun PLGA and small intestine submucosa-blended nanofibrous membranes and their biocompatibility for wound healing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In recent decades, tremendous research has focused on the production of nanoscale fibers using synthetic polymers, with the goal of fabricating nanofibrous scaffolds for wound healing. However, the hydrophobicity of such polymers typically hinders attachment and proliferation of the cells. In this study, we combined poly-d,l-lactide-co-glycolide (PLGA) and small intestine submucosa (SIS) to fabricate blended nanofibers for wound healing by electrospinning. PLGA and SIS were dissolved in 1,1,1,3,3,3-hexafluoro isopropanol to produce different weight ratios of PLGA/SIS-blended nanofibrous membranes (NFM). Physicochemical characterization of the electrospun NFM was performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, water contact angle analysis, degradation test and tensile testing. The PLGA/SIS-blended NFM showed improved hydrophilicity and tensile strength. Better infiltration, attachment and proliferation of rat granulation fibroblasts of PLGA/SIS-blended NFMs compared to PLGA NFMs were identified by morphological differences determined by SEM and a water-soluble tetrazolium salt assay kit. Based on our results, the PLGA/SIS blended NFMs were found to be suitable for use as a potential material for wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Boyce, Burns, 27, 523 (2001).

    Article  CAS  Google Scholar 

  2. L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, and C. Han, Biomaterials, 24, 4833 (2003).

    Article  CAS  Google Scholar 

  3. Z. Ruszczak, Adv. Drug Deliv. Rev., 55, 1595 (2003).

    Article  CAS  Google Scholar 

  4. W. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002).

  5. H. W. Tong and M. Wang, J. Macromol. Sci. Phys., 50, 1535 (2011).

    Article  CAS  Google Scholar 

  6. Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 12, 1197 (2006).

    Article  CAS  Google Scholar 

  7. N. Bhardwaj and S. C. Kundu, Bio. Technol. Adv., 28, 325 (2010).

    CAS  Google Scholar 

  8. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, and B. H. Bay, Acta Biomater., 3, 321 (2007).

    Article  CAS  Google Scholar 

  9. S. Hong and G. H. Kim, Macromol Mater Eng., 295, 529 (2010).

    Article  CAS  Google Scholar 

  10. L. Buttafoco, N. G. Kolkman, and P. Engbers-buijtenhuijs, Biomaterials, 27, 724 (2006).

    Article  CAS  Google Scholar 

  11. B. Duan, L. Wu, X. Li, X. Yuan, X. Li, Y. Zhang, and K. Yao, J. Biomater. Sci. Polym. Ed., 18, 95 (2007).

    Article  CAS  Google Scholar 

  12. J. X. Li, A. H. He, C. C. Han, D. F. Fang, B. S. Hsiao, and B. Chu, Macromol. Rapid Commun., 27, 114 (2006).

    Article  CAS  Google Scholar 

  13. I. K. Kwon and T. Matsuda, Biomacromolecules, 6, 2096 (2005).

    Article  CAS  Google Scholar 

  14. Y. Hong, K. Takanari, N. J. Amoroso, R. Hashizume, E. P. Brennan-Pierce, J. M. Freund, S. F. Badylak, and W. R. Wagner, Tissue Eng. Part C Methods, 18, 122 (2012).

    Article  CAS  Google Scholar 

  15. J. J. Stankus, D. O. Freytes, S. F. Badylak, and W. R. Wagner, J. Biomater. Sci. Polym. Ed., 19, 635 (2008).

    Article  CAS  Google Scholar 

  16. J. W. Lu, Y. L. Zhu, Z. X. Guo, P. Hu, and J. Yu, Polymer (Guildf), 47, 8026 (2006).

    Article  CAS  Google Scholar 

  17. K. S. Kim, J. Y. Lee, Y. M. Kang, E. S. Kim, G. H. Kim, S. D. Rhee, H. G. Cheon, J. H. Kim, B. H. Min, H. B. Lee, and M. S. Kim, Biomaterials, 31, 1104 (2010).

    Article  CAS  Google Scholar 

  18. J. H. Lee, J. Y. Lim, S. I. Ahn, J. H. Park, Y. T. Kim, J. M. Rhee, and G. Khang, Tissue Eng. Regen. Med., 5, 451 (2008).

    Google Scholar 

  19. C. D. Prevel, B. L. Eppley, D. J. Summerlin, R. Sidner, J. R. Jackson, M. McCarty, and S. F. Badylak, Ann. Plast. Surg., 35, 337 (1995).

    Article  Google Scholar 

  20. M. S. Kim, K. D. Hong, H. W. Shin, S. H. Kim, S. H. Kim, M. S. Lee, W. Y. Jang, G. Khang, and H. B. Lee, Int. J. Biol. Macromol., 36, 54 (2005).

    Article  CAS  Google Scholar 

  21. Y. M. Bello, A. F. Falabella, and W. H. Eaglstein, Am. J. Clin. Dermatol., 2, 305 (2001).

    Article  CAS  Google Scholar 

  22. H. Yoon and G. Kim, J. Biomater. Sci. Polym. Ed., 21, 553 (2010).

    Article  CAS  Google Scholar 

  23. S. Hong and G. Kim, J. Biomed. Mater. Res. B Appl. Biomater., 94, 421 (2010).

    Google Scholar 

  24. C. Kim, S. H. Kim, Y. Song, S. H. Jung, H. L. Kim, J. M. Oh, J. H. Park, D. Lee, J. M. Rhee, and G. Khang, Tissue Eng. Regen. Med., 6, 825 (2009).

    CAS  Google Scholar 

  25. Y. K. Ko, M. K. Choi, S. H. Kim, G. A. Kim, H. B. Lee, J. M. Rhee, and G. Khang, Polymer, 32, 199 (2008).

    CAS  Google Scholar 

  26. M. Ngiam, S. Liao, A. J. Patil, Z. Cheng, C. K. Chan, and S. Ramakrishna, Bone, 45, 4 (2009).

    Article  CAS  Google Scholar 

  27. G. Khang, J. M. Rhee, P. Shin, I. Y. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002).

    Article  CAS  Google Scholar 

  28. Y. You, B. M. Min, S. J. Lee, T. S. Lee, and W. H. Park, J. Appl. Polym. Sci., 95, 193 (2005).

    Article  CAS  Google Scholar 

  29. S. L. Voytik-Harbin, A. O. Brightman, M. R. Kraine, B. Waisner, and S. F. Badylak, J. Cell Biochem., 67, 478 (1997).

    Article  CAS  Google Scholar 

  30. K. Lindberg and S. F. Badylak, Burns, 27, 254 (2001).

    Article  CAS  Google Scholar 

  31. S. J. Lee, I. W. Lee, Y. M. Lee, H. B. Lee, and G. Khang, J. Biomater. Sci. Polym. Ed., 15, 1003 (2004).

    Article  CAS  Google Scholar 

  32. N. A. M. Barakat, M. A. Kanjwal, F. A. Sheikh, and H. Yong, Polymer (Guildf), 50, 4389 (2009).

    Article  CAS  Google Scholar 

  33. J. Rnjak-Kovacina, T. M. Desrochers, K. A. Burke, and D. L. Kaplan, Macromol. Biosci., 15, 861 (2015).

    Article  CAS  Google Scholar 

  34. K. Sisson, C. Zhang, M. C. Farach-Carson, D. B. Chase, and J. F. Rabolt, Biomacromolecules, 10, 1675 (2009).

    Article  CAS  Google Scholar 

  35. J. R. Venugopal and Y. Zhang, Artif. Organs, 30, 440 (2006).

    Article  CAS  Google Scholar 

  36. N. T. Hiep and B. T. Lee, J. Mater. Sci. Mater. Med., 21, (2010).

    Google Scholar 

  37. M. S. Kim, H. H. Ahn, Y. N. Shin, M. H. Cho, G. Khang, and H. B. Lee, Biomaterials, 28, 5137 (2007).

    Article  CAS  Google Scholar 

  38. V. Thomas, D. R. Dean, M. V. Jose, B. Mathew, S. Chowdhury, and Y. K. Vohra, Biomacromolecules, 8, 631 (2007).

    Article  CAS  Google Scholar 

  39. K. Anselme, Biomaterials, 21, 667 (2000).

    Article  CAS  Google Scholar 

  40. D. Yixiang, T. Yong, S. Liao, C. K. Chan, and S. Ramakrishna, Tissue Eng. Part A, 14, 1321 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwi-Yool Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Lee, J.Y., Kim, H. et al. Fabrication of electropsun PLGA and small intestine submucosa-blended nanofibrous membranes and their biocompatibility for wound healing. Fibers Polym 18, 231–239 (2017). https://doi.org/10.1007/s12221-017-6936-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6936-y

Keywords

Navigation