Skip to main content
Log in

Breathing measurement on the basis of contact resistance of cross-overlapping conductive yarns

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

To improve the comfort and conformance of the textile-integrated breathing sensor, the change of contact electrical resistance of cross-overlapping conductive yarns was utilized to make piezo-resistive sensors, and the tape with this simple sensor was used to record human respiratory signal. And also, it was explored for the methods enhancing the electromechanical responses. The experimental results indicated that an increasing number of contact points improved the change of contact resistance. Furthermore, the coated silica gel at the contact points helps to avoid the slippage of overlapping threads under tensile strain and to improve the repeatability of the electro-mechanical responses. The in-time sampled human breathing signal at rest demonstrated the performance of the developed textile sensor. These results showed that the developed simple and portable sensor possesses good sensitivity and linearity under low dynamic forces, and the relocation of the cross-overlapping yarns leads to the poor repeatability and stability of piezoresistive textile sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, and S. Tan, Pediatr. Pulm., 46, 523 (2011).

    Article  CAS  Google Scholar 

  2. Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, Adv. Mater., 28, 19 (2016).

    Google Scholar 

  3. S. C. Tarrant, R. E. Ellis, F. C. Flack, and W. G. Selley, Dysphagia, 12, 24 (1997).

    Article  CAS  Google Scholar 

  4. R. Wijesiriwardana, IEEE Sens. J., 6, 571 (2006).

    Article  Google Scholar 

  5. M. Ciocchetti, C. Massaroni, P. Saccomandi, M. A. Caponero, A. Polimadei, D. Formica, and E. Schena, Biosensors, 5, 602 (2015).

    Article  Google Scholar 

  6. L. Dziuda, F. Skibniewski, M. Krej, and J. Lewandowski, Trans. Biomed. Eng., 59, 1934 (2012).

    Article  Google Scholar 

  7. K. F. Lei, Y. Z. Hsieh, Y. Y. Chiu, and M. H. Wu, Sensors, 15, 18801 (2015).

    Article  Google Scholar 

  8. E. Nilsson, A. Lund, C. Jonasson, C. Johansson, and B. Hagstrom, Sens. Actuator A-Phys., 201, 477 (2013).

    Article  CAS  Google Scholar 

  9. G. Roopa Manjunatha, K. Rajanna, D. Mahapatra, M. Nayak, U. Krishnaswamy, and R. Srinivasa, J. Clin. Monit. Comput., 27, 647 (2013).

    Article  CAS  Google Scholar 

  10. P. Fiedler, S. Biller, S. Griebel, and J. Haueisen, “2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society”, pp.1606–1609, San Diego, CA, 2012.

    Book  Google Scholar 

  11. M. Catrysse, R. Puers, C. Hertleer, L. van Langenhove, H. van Egmond, and D. Matthys, Sens. Actuator A-Phys., 114, 302 (2004).

    Article  CAS  Google Scholar 

  12. R. Paradiso, G. Loriga, and N. Taccini, IEEE Trans. Inf. Technol. Biomed., 9, 337 (2005).

    Article  Google Scholar 

  13. T. Hoffmann, B. Eilebrecht, and S. Leonhardt, IEEE Sens. J., 11, 1112 (2011).

    Article  Google Scholar 

  14. C. R. Merritt, H. T. Nagle, and E. Grant, IEEE Sens. J., 9, 71 (2009).

    Article  Google Scholar 

  15. M. Frydrysiak and J. Zieba, Fibres Text. East Eur., 91, 74 (2012).

    Google Scholar 

  16. S. Hamdani and A. Fernando, Sensors (Basel), 15, 7742 (2015).

    Article  Google Scholar 

  17. L. Guo, L. Berglin, U. Wiklund, and H. Mattila, Text. Res. J., 83, 499 (2013).

    Article  Google Scholar 

  18. S. D. Min, Y. Yun, and H. Shin, IEEE Sens. J., 14, 3245 (2014).

    Article  Google Scholar 

  19. O. Atalay, W. R. Kennon, and E. Demirok, IEEE Sens. J., 15, 110 (2015).

    Article  Google Scholar 

  20. C. T. Huang, C. L. Shen, C. F. Tang, and S. H. Chang, Sens. Actuator A-Phys., 141, 396 (2008).

    Article  CAS  Google Scholar 

  21. S. K. Kundu, S. Kumagai, and M. Sasaki, Jan. J. Appl. Phys., 52, 04CL05 (2013).

    Article  Google Scholar 

  22. L. Guo, Ph. D. Dissertation, Tampere University of Techology, Tampere, 2014.

    Google Scholar 

  23. H. Zhang, Meas. Sci. Technol., 26, 105102 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Hu, J., Zhang, H. et al. Breathing measurement on the basis of contact resistance of cross-overlapping conductive yarns. Fibers Polym 18, 369–375 (2017). https://doi.org/10.1007/s12221-017-6629-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6629-6

Keywords

Navigation