Skip to main content
Log in

Polyvinylidene fluoride film based nasal sensor to monitor human respiration pattern: An initial clinical study

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Design and development of a piezoelectric polyvinylidene fluoride (PVDF) thin film based nasal sensor to monitor human respiration pattern (RP) from each nostril simultaneously is presented in this paper. Thin film based PVDF nasal sensor is designed in a cantilever beam configuration. Two cantilevers are mounted on a spectacle frame in such a way that the air flow from each nostril impinges on this sensor causing bending of the cantilever beams. Voltage signal produced due to air flow induced dynamic piezoelectric effect produce a respective RP. A group of 23 healthy awake human subjects are studied. The RP in terms of respiratory rate (RR) and Respiratory air-flow changes/alterations obtained from the developed PVDF nasal sensor are compared with RP obtained from respiratory inductance plethysmograph (RIP) device. The mean RR of the developed nasal sensor (19.65 ± 4.1) and the RIP (19.57 ± 4.1) are found to be almost same (difference not significant, p > 0.05) with the correlation coefficient 0.96, p < 0.0001. It was observed that any change/alterations in the pattern of RIP is followed by same amount of change/alterations in the pattern of PVDF nasal sensor with k = 0.815 indicating strong agreement between the PVDF nasal sensor and RIP respiratory air-flow pattern. The developed sensor is simple in design, non-invasive, patient friendly and hence shows promising routine clinical usage. The preliminary result shows that this new method can have various applications in respiratory monitoring and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lec MR. Piezoelectric biosensors: recent advances and applications. IEEE international frequency control symposium and PDA exhibition; 2001.

  2. Ikeda K, Watanabe A, Saito M. A vital sign sensor for elderly people at home, Biotelemetry, vol 11; 1991.

  3. Folke M, Cernerud L, Ekstrom M, Hok B. Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput. 2003;41:377–83.

    Article  PubMed  CAS  Google Scholar 

  4. Cretikos MA. Respiratory rate: the neglected vital sign’. Med J Aust. 2008;11:657–9.

    Google Scholar 

  5. A. Timothy ueen: ‘ear, nose, throat and allergy–nasal obstruction’, 2003. http://www.vaentallery.com/nasal_obstruction.html.

  6. Berg S, Haight JS, Yap V, Hoffstein V, Cole P. Comparison of direct and indirect Measurements of respiratory airflow: implications for hypopneas. Sleep. 1997;20:60–4.

    PubMed  CAS  Google Scholar 

  7. Krieger B, Feinerman D, Zaron A. Continuous non-invasive monitoring of respiratory rate in critically ill patients. Chest. 1986;90:632–4.

    Article  PubMed  CAS  Google Scholar 

  8. Simoes EA, Rourte R, Berman S. Respiratory rate: measurement of variability over time and accurately at different counting periods. Arch Dis Child. 1991;66:1199–203.

    Article  PubMed  CAS  Google Scholar 

  9. Freundlich JJ, Erickson JC. Electrical impedance pneumography for simple non-restrictive continuous monitoring of respiratory rate, rhythm and tidal volume for surgical patients. Chest. 1974;65:181–4.

    Article  PubMed  CAS  Google Scholar 

  10. Sage J, Gough W. A simple inexpensive device for monitoring patient respiration. Med Biol Eng Comput. 1998;36:231–2.

    Article  PubMed  CAS  Google Scholar 

  11. Pettersson H, Stenow EN, Cai H. Optical aspects of a fibre-optic sensor for respiratory rate monitoring. Med Biol Eng Comput. 1996;34:448–52.

    Article  PubMed  CAS  Google Scholar 

  12. De Meersman RE, Zion AS, Teitelbaum S. Deriving respiration from pulse wave: a new signal-processing technique. Am J Physiol. 1996;270:1672–5.

    Google Scholar 

  13. Linko K, Paloheimo M. Monitoring of the inspired and end-tidal oxygen, carbon dioxid, and nitrous oxide concentrations: clinical applications during anesthesia and recovery. J Clin Monit Comput. 1989;5:149–56.

    CAS  Google Scholar 

  14. Dodds D, Purdy J, Moulton D. The PEP transducer: a new way of measuring Respiratory rate in the non-intubated patient. J Accid Med. 1999;16:26–8.

    Article  CAS  Google Scholar 

  15. Tobin MJ. Respiratory monitoring in the intensive care unit. Am Rev Respir Dis. 1988;138:1625–42.

    Article  PubMed  CAS  Google Scholar 

  16. Cohn MA, Rao ASV, Broudy M, Birch S, Watson H, Atkins N, Davis B, Stott FD, Sackner MA. The respiratory inductive plethysmograph: a new noninvasive monitor of respiration. Bull Europ Physiopathol Respir. 1982;18:643–58.

    CAS  Google Scholar 

  17. Kawai H. The piezoelectric of polyvinylidene fluoride. J Appl Phys. 1969;8:73–7.

    Google Scholar 

  18. Huang YP, Young MS, Huang KN. Respiratory rate monitoring gauze mask system based on a pyroelectric transducer. Proceedings of IEEE; 2008. pp. 1648–1649.

  19. Kulkarni V, Cyna A, Hutenison JM, Tunstall ME, Mallard J. AURA: a new respiratory monitor. Biomed Sci Instrum. 1990;26:111–20.

    PubMed  CAS  Google Scholar 

  20. Siivola J. New non-invasive piezoelectric transducer for recording of respiration, heart rate and body movements. Med Bio Eng Comp. 1989;27:423–4.

    Article  CAS  Google Scholar 

  21. Niizeki K, Nishidate I, Uchida K, Kuwahara M. Unconstrained cardiorespiratory and body movement monitoring system for home care. Med Biol Eng Comput. 2005;43:716–24.

    Article  PubMed  CAS  Google Scholar 

  22. Kärki S, Lekkala J. Film-type transducer materials PVDF and EMFi in the measurement of heart and respiration rate. Proceedings of International IEEE EMBS Conference; 2008. pp. 530–533.

  23. Choi S, Jiang Z. A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens Actuators A. 2006;128:317–26.

    Article  CAS  Google Scholar 

  24. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurements. Lancet. 1986;8:307–10.

    Article  Google Scholar 

  25. Altman DG. Practical statistics for medical research. New York: Chapman Hall; 1999. p. 403–7.

    Google Scholar 

  26. Ono Y, Liu Q, Kobayashi M, Je CK, Blouin A. A Piezoelectric membrane sensor for biomedical monitoring. IEEE Ultrasonics Symposium; 2006.

  27. Farre R, Montserrat JM, Navajas D. Noninvasive monitoring of respiratory mechanics during sleep. J Eur Respir. 2004;24:1052–60.

    Article  CAS  Google Scholar 

  28. Cohen KR, Ladd WM, Beams DM, Sheers WS, Radwin RG, Tompkins WJ, Webster JG. Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction. IEEE Trans Biorned Eng. 1997;44:555–66.

    Article  CAS  Google Scholar 

  29. Watson HL, Poole DA, Sackner MA. Accuracy of respiratory inductive plethysmographic cross-sectional areas. J Appl Physiol. 1988;65:306–8.

    PubMed  CAS  Google Scholar 

  30. Sackner MA, Watson H, Belsito AS, Feinerman D, Suarez M, Gonzalez G, Bizousky F, Krieger B. Calibration of respiratory inductive plethysmograph during natural breathing. J Appl Physiol. 1989;66:410–20.

    PubMed  CAS  Google Scholar 

  31. Herman IP. Biological and medical physics, biomedical engineering—physics of human body. 2nd ed. New York: Springer; 2008.

    Google Scholar 

  32. Grant HD, Murry RD, Bergeron JD. Emergency care. 4th ed. USA: Prentice-hall; 1986.

    Google Scholar 

  33. Berry RB, Koch GL, Trautz S, Wagner MH. Comparison of respiratory event detection by polyvinylidene fluoride and a Pneumotachograph in sleep apnea patients. Chest. 2005;128:1331–8.

    Article  PubMed  Google Scholar 

  34. Cole P, Ayiomanimitis A, Ohki M. Anterior and posterior rhinometry. Rhinology. 1989;27:257–62.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Nirmala KS, EEG and Sleep lab, M S Ramaiah Medical Collage and Hospital, Bangalore, India, for her help and advice during data collection. Authors also thank Prof. N S Murthy and Ms. Radhika, Department of Biostatistics, M S Ramaiah Medical College and Hospital, Bangalore, India for their valuable inputs and kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rajanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roopa Manjunatha, G., Rajanna, K., Mahapatra, D.R. et al. Polyvinylidene fluoride film based nasal sensor to monitor human respiration pattern: An initial clinical study. J Clin Monit Comput 27, 647–657 (2013). https://doi.org/10.1007/s10877-013-9486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-013-9486-x

Keywords

Navigation