Skip to main content
Log in

Effect of cationic structure of ionic liquids on dissolution and regeneration of white hide powder

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

3-methyl-1-ethoxycarbonylimidazolium chloride ([EtMIM]Cl), was synthesized for white hide powder dissolution. White hide powder was successfully dissolved in [EtMIM]Cl, and regenerated from methanol. The dissolution data and thermodynamic parameter of white hide powder in [EtMIM]Cl and [BMIM]Cl were studied. Hydrogen bond basicity (β) and general polarizability (π*) of ILs were determined. The white hide powders were characterized by FT-IR, XRD, and TGA. The results showed that the maximum solubility of white hide powder in [EtMIM]Cl was higher than that in [BMIM]Cl at same dissolution temperature. At same temperature and same solid content, the dissolution time of white hide powder in [EtMIM]Cl was shorter than that in [BMIM]Cl. Density functional theory (DFT) simulation showed that two kinds of hydrogen bonds (C-H/O and C-H/Cl) and eight strong hydrogen bonds are found in [EtMIM]Cl/GPH, while seven hydrogen bonds are found in [BMIM]Cl/GPH. The carboxylic acid ester cationic group in [EtMIM]+ has more electronegative ester groups and stronger electronic cloud density oxygen atoms than alkyl group in [BMIM]+, [EtMIM]Cl is easier to destroy the intermolecular or intramolecular hydrogen bonds in white hide powder, so as to accelerate the dissolution of white hide powder in [EtMIM]Cl. The molecular simulation results indicated that both Cl anions and [EtMIM]+ cation played important roles in the white hide powder dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Vijayaraghavan, B. C. Thompson, D. R. MacFarlane, R. Kumar, M. Surianarayanan, S. Aishwarya, and P. K. Sehgal, Chem. Commun., 46, 294 (2010).

    Article  CAS  Google Scholar 

  2. M. D. Shoulders and R. T. Raines, Annu. Rev. Biochem., 78, 929 (2009).

    Article  CAS  Google Scholar 

  3. H. L. Tian, Y. H. Chen, C. C. Ding, and G. Y. Li, Carbohydr. Polym., 89, 542 (2012).

    Article  CAS  Google Scholar 

  4. V. K. Yadavalli, D. V. Svintradze, and R. M. Pidaparti, Int. J. Biol. Macromol., 46, 458 (2010).

    Article  CAS  Google Scholar 

  5. M. C. Gómez-Guillén, B. Giménez, M. E. López-Caballero, and M. P. Montero, Food Hydrocolloids, 25, 1813 (2011).

    Article  Google Scholar 

  6. M. A. Farage, K. W. Miller, P. Elsner, and H. I. Maibach, Int. J. Cosmet. Sci., 30, 87 (2008).

    Article  CAS  Google Scholar 

  7. F. Chen, J. Zhang, M. Zhang, Y. An, F. Chen, and Z. Wu, Biomaterials, 31, 7892 (2010).

    Article  CAS  Google Scholar 

  8. M. B. Fauzi, Y. Lokanathan, B. S. Aminuddin, B. H. I. Ruszymah, and S. R. Chowdhury, Mater. Sci. Eng. C, 68, 163 (2016).

    Article  CAS  Google Scholar 

  9. R. Tylingo, G. Gorczyca, S. Mania, P. Szweda, and S. Milewski, React. Funct. Polym., 103, 131 (2016).

    Article  CAS  Google Scholar 

  10. X. H. Liu, S. D. Zheng, W. H. Dan, and N. H. Dan, Fiber. Polym., 17, 1186 (2016).

    Article  CAS  Google Scholar 

  11. D. K. Yin, H. Wu, C. X. Liu, J. Zhang, T. Zhou, J. J. Wu, and Y. Wan, React. Funct. Polym., 83, 98 (2014).

    Article  CAS  Google Scholar 

  12. F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, and S. Asnacios, Soft Matter, 6, 3769 (2010).

    Article  CAS  Google Scholar 

  13. M. Y. Li, M. J. Mondrinos, M. R. Gandhi, F. K. Ko, A. S. Weiss, and P. I. Lelkes, Biomaterials, 26, 5999 (2005).

    Article  CAS  Google Scholar 

  14. Z. Zhang, A. A. M. Salih, M. T. Li, and B. L. Yang, Energ. Fuel., 28, 2802 (2014).

    Article  CAS  Google Scholar 

  15. E. B. Silva, D. Santos, D. R. M. Alves, M. S. Barbosa, R. C. L. Guimaraes, B. M. S. Ferreira, R. A. Guarnieri, E. Franceschi, C. Dariva, and A. F. Santos, Energ. Fuel., 27, 6311 (2013).

    Article  CAS  Google Scholar 

  16. Z. W. Wu, C. Chen, Q. R. Guo, B. X. Li, Y. G. Que, L. Wang, H. Wan, and G. F. Guan, Fuel, 184, 128 (2016).

    Article  CAS  Google Scholar 

  17. J. P. Hallett and T. Welton, Chem. Rev., 111, 3508 (2011).

    Article  CAS  Google Scholar 

  18. B. M. Ma, X. L. Hou, and C. J. He, Fiber. Polym., 16, 2704 (2015).

    Article  CAS  Google Scholar 

  19. A. M. da Costa Lopes and R. Bogel-Łukasik, ChemSusChem, 8, 947 (2015).

    Article  Google Scholar 

  20. D. T. Liu, K. F. Xia, W. H. Cai, R. D. Yang, L. Q. Wang, and B. Wang, Carbohydr. Polym., 87, 1058 (2012).

    Article  CAS  Google Scholar 

  21. H. Wang, G. Gurau, and R. D. Rogers, Chem. Soc. Rev., 41, 1519 (2012).

    Article  CAS  Google Scholar 

  22. M. Shibata, N. Teramoto, T. Nakamura, and Y. Saitoh, Carbohydr. Polym., 98, 1532 (2013).

    Article  CAS  Google Scholar 

  23. L. K. J. Hauru, M. Hummel, A. W. T. King, I. Kilpeläinen, and H. Sixta, Biomacromolecules, 13, 2896 (2012).

    Article  CAS  Google Scholar 

  24. D. M. Phillips, L. F. Drummy, D. G. Conrady, D. M. Fox, R. R. Naik, M. O. Stone, P. C. Trulove, H. C. De Long, and R. A. Mantz, J. Am. Chem. Soc., 126, 14350 (2004).

    Article  CAS  Google Scholar 

  25. H. B. Xie, S. H. Li, and S. B. Zhang, Green Chemistry, 7, 606 (2005).

    Article  CAS  Google Scholar 

  26. X. F. Sun, Q. Q. Tian, Z. M. Xue, Y. W. Zhang, and T. C. Mu, RSC Adv., 4, 30282 (2014).

    Article  CAS  Google Scholar 

  27. S. Mateyawa, D. F. Xie, R. W. Truss, P. J. Halley, T. M. Nicholson, J. L. Shamshina, R. D. Rogers, M. W. Boehm, and T. McNally, Carbohydr. Polym., 94, 520 (2013).

    Article  CAS  Google Scholar 

  28. Z. J. Meng, X. J. Zheng, K. Y. Tang, J. Liu, Z. Ma, and Q. L. Zhao, Int. J. Biol. Macromol., 51, 440 (2012).

    Article  CAS  Google Scholar 

  29. Y. Hu, L. Liu, W. H. Dan, N. H. Dan, and Z. P. Gu, J. Appl. Polym. Sci., 130, 2245 (2013).

    Article  CAS  Google Scholar 

  30. A. Mehta, J. R. Rao, and N. N. Fathima, Colloids and Surf. B: Biointerfaces, 117, 376 (2014).

    Article  CAS  Google Scholar 

  31. G. W. Wang, J. R. Guo, L. H. Zhuang, Y. Wang, and B. Xu, Int. J. Biol. Macromol., 76, 70 (2015).

    Article  Google Scholar 

  32. B. Xu, Q. P. Li, L. H. Zhuang, Q. Wang, C. Li, G. W. Wang, and P. J. Halley, Fiber. Polym., 17, 1741 (2016).

    Article  CAS  Google Scholar 

  33. R. Lungwitz and S. Spange, New J. Chem., 32, 392 (2008).

    Article  CAS  Google Scholar 

  34. L. K. J. Hauru, M. Hummel, A. W. T. King, I. Kilpelainen, and H. Sixta, Biomacromolecules, 13, 2896 (2012).

    Article  CAS  Google Scholar 

  35. S. K. Shukla, N. D. Khupse, and A. Kumar, Chem. Phys., 14, 2754 (2012).

    CAS  Google Scholar 

  36. A. Tarannum, C. Muvva, A. Mehta, J. R. Rao, and N. N. Fathima, RSC Adv., 6, 4022 (2016).

    Article  CAS  Google Scholar 

  37. Q. Q. Tian, S. Y. Liu, X. F. Sun, H. T. Sun, Z. M. Xue, and T. C. Mu, Carbohydr. Res., 408, 107 (2015).

    Article  CAS  Google Scholar 

  38. A. Tarannum, C. Muvva, A. Mehta, J. R. Rao, and N. N. Fathima, J. Phys. Chem. B., 120, 6515 (2016).

    Article  CAS  Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  40. C. Chiappe and D. Pieraccini, J. Phys. Org. Chem., 18, 275 (2005).

    Article  CAS  Google Scholar 

  41. A. J. Queimada, F. L. Mota, S. P. Pinho, and E. A. Macedo, J. Phys. Chem. B., 113, 3469 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linghua Zhuang or Guowei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xu, B., Wang, Y. et al. Effect of cationic structure of ionic liquids on dissolution and regeneration of white hide powder. Fibers Polym 18, 1512–1522 (2017). https://doi.org/10.1007/s12221-017-1120-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1120-y

Keywords

Navigation