Skip to main content
Log in

Study on the dissolution behaviors of CL-20/TNT co-crystal in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20)/2,4,6-trinitrotoluene (TNT) co-crystal in 1:1 molar ratio was prepared by a solvent evaporation method, and the structural characterizations of CL-20/TNT co-crystal were systematically investigated by powder X-ray diffraction, Raman and differential scanning calorimeter. The dissolution behaviors of CL-20/TNT co-crystal in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) were investigated by a DC08-1 Calvet microcalorimeter at 298.15 K, showing that the dissolution processes were all exothermic. The heat effects (Q) of CL-20/TNT co-crystal dissolved in DMF and DMSO both increased with the increase of the amount of co-crystal. Empirical formulas for the calculation of the enthalpies of dissolution (\(\Delta _{\text{diss}} H\)), relative apparent molar enthalpies (\(\Delta _{\text{diss}} H_{\text{apparent}}\)), relative partial molar enthalpies (\(\Delta _{\text{diss}} H_{\text{partial}}\)) were obtained from the experimental data of CL-20/TNT co-crystal dissolved in DMF and DMSO. It was found that the values of \(\Delta _{\text{diss}} H\), \(\Delta _{\text{diss}} H_{\text{apparent}}\) and \(\Delta _{\text{diss}} H_{\text{partial}}\) were affected by the molality of co-crystal (b). The kinetic equations describing the dissolution of CL-20/TNT co-crystal in DMF and DMSO at 298.15 K are \({\text{d}}\alpha / {\text{d}}t = 10^{ - 2.39} \left( {1 - \alpha } \right)^{0.89}\) and \({\text{d}}\alpha / {\text{d}}t = 10^{ - 2.47} \left( {1 - \alpha } \right)^{0.62}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang Z, Ding L, Wu P, Liu Y, Nie F, Huang F. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity. Chem Eng J. 2015;268:60–6.

    Article  CAS  Google Scholar 

  2. Bolton O, Simke LR, Pagoria PF, Matzger AJ. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des. 2012;12(9):4311–4.

    Article  CAS  Google Scholar 

  3. Gong F, Zhang J, Ding L, Yang Z, Liu X. Mussel-inspired coating of energetic crystals: a compact core-shell structure with highly enhanced thermal stability. Chem Eng J. 2017;309:140–50.

    Article  CAS  Google Scholar 

  4. Wang Y, Song X, Song D, Liang L, An C, Wang J. Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. J Hazard Mater. 2016;312:73–83.

    Article  CAS  Google Scholar 

  5. Wei X, Zhang A, Ma Y, Xue X, Zhou J, Zhu Y, Zhang C. Toward low-sensitive and high-energetic cocrystal III: thermodynamics of energetic-energetic cocrystal formations. CrystEngComm. 2015;17(47):9037–47.

    Article  CAS  Google Scholar 

  6. Xu H, Duan X, Li H, Pei C. A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv. 2015;5(116):95764–70.

    Article  CAS  Google Scholar 

  7. Xu Z, Cheng G, Yang H, Ju X, Yin P, Zhang J, Shreeve J. A facile and versatile synthesis of energetic furazan-functionalized 5-nitroimino-1,2,4-triazoles. Angew Chem Int Ed. 2017;56(21):5877–81.

    Article  CAS  Google Scholar 

  8. He G, Yang Z, Zhou X, Zhang J, Pan L, Liu S. Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets. Compos Sci Technol. 2016;131:22–31.

    Article  CAS  Google Scholar 

  9. Qiu H, Stepanov V, Di Stasio AR, Chou T, Lee WY. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity. J Hazard Mater. 2011;185(1):489–93.

    Article  CAS  Google Scholar 

  10. Chen T, Jiang W, Du P, Liu J, Hao G, Gao H, Xiao L, Ke X. Facile preparation of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/glycidylazide polymer energetic nanocomposites with enhanced thermolysis activity and low impact sensitivity. Rsc Adv. 2017;7(10):5957–65.

    Article  CAS  Google Scholar 

  11. Li Y, Shu Y, Wang B, Zhang S, Zhai L. Synthesis, structure and properties of neutral energetic materials based on N-functionalization of 3,6-dinitropyrazolo[4,3-c]pyrazole. Rsc Adv. 2016;6(88):84760–8.

    Article  CAS  Google Scholar 

  12. Huang H, Shi Y, Yang J, Li B. Compatibility study of dihydroxylammmonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) with some energetic materials and inert materials. J Energy Mater. 2015;33(1):66–72.

    Article  CAS  Google Scholar 

  13. Wu J, Zhang J, Li T, Li Z, Zhang T. A novel cocrystal explosive NTO/TZTN with good comprehensive properties. Rsc Adv. 2015;5(36):28354–9.

    Article  CAS  Google Scholar 

  14. Chen P, Zhang L, Zhu S, Cheng G, Li N. Investigation of TNB/NNAP cocrystal synthesis, molecular interaction and formation process. J Mol Struct. 2017;1128:629–35.

    Article  CAS  Google Scholar 

  15. Zhou J, Shi L, Zhang C, Li H, Chen M, Chen W. Theoretical analysis of the formation driving force and decreased sensitivity for CL-20 cocrystals. J Mol Struct. 2016;1116:93–101.

    Article  CAS  Google Scholar 

  16. Guo C, Zhang H, Wang X, Xu J, Liu Y, Liu X, Huang H, Sun J. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct. 2013;1048(11):267–73.

    Article  CAS  Google Scholar 

  17. Gao H, Zhang S, Ren F, Liu F, Gou R, Ding X. Theoretical insight into the co-crystal explosive of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1,1-diamino-2,2-dinitroethylene (FOX-7). Comput Mater Sci. 2015;107:33–41.

    Article  CAS  Google Scholar 

  18. Liu K, Zhang G, Luan J, Chen Z, Su P, Shu Y. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct. 2016;1110:91–6.

    Article  CAS  Google Scholar 

  19. Qiu H, Patel RB, Damavarapu RS, Stepanov V. Nanoscale 2CL-20·HMX high explosive cocrystal synthesized by bead milling. CrystEngComm. 2015;17(22):4080–3.

    Article  CAS  Google Scholar 

  20. Hang G, Yu W, Wang T, Wang J, Li Z. Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation. J Mol Model. 2017;23(10):281.

    Article  Google Scholar 

  21. Hang G, Yu W, Wang T, Wang J, Li Z. Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation. J Mol Struct. 2017;1141:577–83.

    Article  CAS  Google Scholar 

  22. Guo D, An Q, Zybin SV, Goddard WA III, Huang F, Tang B. The co-crystal of TNT/CL-20 leads to decreased sensitivity toward thermal decomposition from first principles based reactive molecular dynamics. J Mater Chem A. 2015;3(10):5409–19.

    Article  CAS  Google Scholar 

  23. Chen P, Zhang L, Zhu S, Cheng G. Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of CL-20/TEX cocrystal explosive. Can J Chem. 2015;93(6):632–8.

    Article  CAS  Google Scholar 

  24. Tian X, Peng H, Li Y, Yang C, Zhou Z, Wang Y. Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater. Sens Actuators B Chem. 2017;243:1002–9.

    Article  CAS  Google Scholar 

  25. Wang J, Muto M, Yatabe R, Tahara Y, Onodera T, Tanaka M, Okochi M, Toko K. Highly selective rational design of peptide-based surface plasmon resonance sensor for direct determination of 2,4,6-trinitrotoluene (TNT) explosive. Sens Actuators B Chem. 2018;264:279–84.

    Article  CAS  Google Scholar 

  26. Bolton O, Matzger AJ. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed. 2011;50(38):8960–3.

    Article  CAS  Google Scholar 

  27. Cui C, Ren H, Jiao Q. Solubility measurement and correlation for ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane in different alkanes/aromatic hydrocarbon + ethyl acetate binary solvents at temperatures of between 283.15 and 323.15 K. J Chem Eng Data. 2018;63(8):3097–106.

    Article  CAS  Google Scholar 

  28. Lv P, Tong Y, Wang H, Dang L, Sun C, Pang S. Measurement and correlation of solubility of ε-CL-20 in solvent mixtures of (chloroform + ethyl acetate) and (m-xylene + ethyl acetate) at temperatures from 278.15 K to 313.15 K. J Mol Liq. 2017;231:192–201.

    Article  CAS  Google Scholar 

  29. Liu L, Li H, Chen D, Zhou X, Huang Q, Yang H. Solubility of 1,1-diamino-2,2-dinitroethylene in different pure solvents and binary mixtures (dimethyl sulfoxide t water) and (N,N-dimethylformamide t water) at different temperatures. Fluid Phase Equlib. 2018;460:95–104.

    Article  CAS  Google Scholar 

  30. Li N, Zhao F, Xuan C, Gao H, Xiao L. Thermochemical properties of 2,6-diamino-3,5-dinitropyrazine-1-oxide in dimethyl sulfoxide and N-methyl pyrrolidone. J Therm Anal Calorim. 2017;127(3):2511–6.

    Article  CAS  Google Scholar 

  31. Li N, Zhao F, Xuan C, An T, Yang Y, Gao H, Xiao L, Hu R. Thermochemical properties of 2-oxo-1,3,5-trinitro-1,3,5-triazacyclohexane in dimethyl sulfoxide. J Therm Anal Calorim. 2018;131(3):3047–52.

    Article  CAS  Google Scholar 

  32. Kilday MV. The enthalpy of solution of srm-1655 (KCl) in H2O. J Res Natl Bur Stand. 1980;85(6):467–81.

    Article  CAS  Google Scholar 

  33. Doblas D, Rosenthal M, Burghammer M, Chernyshov D, Spitzer D, Ivanov DA. Smart energetic nanosized co-crystals: exploring fast structure formation and decomposition. Cryst Growth Des. 2015;16(1):432–9.

    Article  Google Scholar 

  34. Niu H, Chen S, Jin S, Li L, Shu Q. Dissolution thermodynamics of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate in water at T = (298.15, 303.15, 308.15 and 313.15 K). J Therm Anal Calorim. 2017;128(3):1875–80.

    Article  CAS  Google Scholar 

  35. Xiao L, Luo Y, Zhao F, Gao H, Li N, Chen X, Wang Y, Hu R. Dissolution properties of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane in N-methyl pyrrolidone. J Therm Anal Calorim. 2016;123(1):659–63.

    Article  CAS  Google Scholar 

  36. Li N, Zhao F, Xuan C, Gao H, Xiao L, Qu W, Hu R. Dissolution properties of potassium salt of bis(dinitromethyl)difurazanyl ether in N-methyl pyrrolidone and water. J Therm Anal Calorim. 2016;124(3):1519–24.

    Article  CAS  Google Scholar 

  37. Li Z, Zhao W, Pu X. Study on the oscillation dissolved behavior of oxysophocarpine in water. Thermochim Acta. 2012;537:76–9.

    Article  CAS  Google Scholar 

  38. Xiao L, Zhao F, Xing X, Huang H, Zhou Z, An T, Pei Q, Tan Y. Dissolution properties of ammonium dipicrylamide in dimethyl sulfoxide and N-methyl pyrrolidone. Thermochim Acta. 2012;546:138–42.

    Article  CAS  Google Scholar 

  39. Xing X, Xue L, Zhao F, Gao H, Hu R. Thermochemical properties of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta. 2009;491(1–2):35–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (2167030786).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-chang Kou or Jiao-Qiang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Kou, Kc., Zhang, JQ. et al. Study on the dissolution behaviors of CL-20/TNT co-crystal in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). J Therm Anal Calorim 134, 2375–2382 (2018). https://doi.org/10.1007/s10973-018-7832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7832-4

Keywords

Navigation