Skip to main content
Log in

Flame retardancy, Thermal and mechanical properties of Kenaf fiber reinforced Unsaturated polyester/Phenolic composite

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Unsaturated polyester (UP) resin has been blended with phenolic resin (PF) resole type at various ratios to obtain a homogeneous blend with improved flame resistance compared to its parent polymers. The polymer blend was reinforced with 20 wt% kenaf using hand lay out technique. Fourier transform infrared spectroscopy (FT-IR) was used to characterize changes in the chemical structure of the synthesized composites. The thermal properties of the composites were investigated using thermogravimetric analysis (TGA). The thermal stability of UP/PF kenaf composites co-varies with the PF content, as shown by the degradation temperature at 50 % weight loss. The char yield of the composites increases linearly with PF content as shown by the TGA results. The flammability properties of the composites were determined using the limiting oxygen index (LOI) and UL-94 fire tests. The LOI increased with the PF content while the composites exhibit improved flame retardancy as demonstrated by UL-94 test. The mechanical and morphological properties of the composites were determined by tensile test and scanning electron microscopy (SEM), respectively. The tensile strength and the Young’s modulus of the blend/composites slightly decreased with increasing PF content albeit higher than PF/kenaf fiber composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. T. Chiu, S. H. Chiu, R. E. Jeng, and J. S. Chung, Polym. Degrad. Stabil., 70, 505 (2000).

    Article  Google Scholar 

  2. R. Kozlowski and M. Wladyka-Przybylak, Polym. Adv. Technol., 19, 446 (2008).

    Article  CAS  Google Scholar 

  3. S. Chapple and R. Anandjiwala, J. Thermoplastic Compos. Mater., 23, 871 (2010).

    Article  CAS  Google Scholar 

  4. Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, Mater. Des., 47, 424 (2013).

    Article  CAS  Google Scholar 

  5. A. P. Mouritz and A. G. Gibson, “Fire Properties of Polymer Composite Materials”, pp.237–286, Springer, Netherlands, 2006.

    Google Scholar 

  6. F. Cheng, Y. Hu, and L. Li, Fiber. Polym., 16, 911 (2015).

    Article  CAS  Google Scholar 

  7. P. Hari Sankar, Y. V. Mohana Reddy, and K. Hemachandra Reddy, Fiber. Polym., 16, 443 (2015).

    Article  CAS  Google Scholar 

  8. B. Mortaigne, S. Bourbigot, M. Le Bras, G. Cordellier, A. Baudry, and J. Dufay, Polym. Degrad. Stabil., 64, 443 (1999).

    Article  CAS  Google Scholar 

  9. A. A. A. Rashdi, S. M. Sapuan, A. Khalina, and M. M. H. M. Ahmad, Pertanika J. Sci. Technol., 18, 433 (2010).

    Google Scholar 

  10. L. B. Manfredi, E. S. Rodriquez, M. Wladyka-Przybylak, and A. Vazquez, Polym. Degrad. Stabil., 91, 255 (2006).

    Article  CAS  Google Scholar 

  11. S. Nazare, B. K. Kandola, and A. R. Horrocks, Polym. Adv. Technol., 17, 294 (2006).

    Article  CAS  Google Scholar 

  12. S. Nazare, B. K. Kandola, and A. R. Horrocks, J. Fire Sci., 26, 215 (2008).

    Article  CAS  Google Scholar 

  13. S. Y. Lu and I. Hamerton, Prog. Polym. Sci., 27, 1661 (2002).

    Article  CAS  Google Scholar 

  14. T. D. Hapuarachchi and T. Peijs, Express Polym. Lett., 13, 743 (2009).

    Article  Google Scholar 

  15. L. L. Pan, G. Y. Li, Y. C. Su, and J. S. Lian, Polym. Degrad. Stabil., 97, 1801 (2012).

    Article  CAS  Google Scholar 

  16. L. Tibiletti, C. Longuet, L. Ferry, P. Coutelen, A. Mas, J. J. Robin, and J. M. Lopez-Cuesta, Polym. Degrad. Stabil., 96, 67 (2011).

    Article  CAS  Google Scholar 

  17. X. Xie, L. Wang, and G. Zhang, Adv. Mater. Res., 399-401, 1372 (2012).

    Article  CAS  Google Scholar 

  18. H. Tang, X.-B. Zhou, and X.-L. Liu, Procedia Eng., 52, 336 (2013).

    Article  CAS  Google Scholar 

  19. K. Dai, L. Song, and Y. Hu, High Perform. Polym., 25, 938 (2013).

    Article  Google Scholar 

  20. D. Deli, B. K. Kandola, J. R. Ebdon, and L. Krishnan, J. Mater. Sci., 48, 6929 (2013).

    Article  CAS  Google Scholar 

  21. H. Ku, F. Cardona, D. Rogers, and J.-C. J. Munoz, Mater. Eng. Perform., 19, 912 (2010).

    Article  CAS  Google Scholar 

  22. H. T. Chiu, R. E. Jeng, and J. S. Chung, J. Appl. Polym. Sci., 91, 1041 (2004).

    Article  CAS  Google Scholar 

  23. M. H. Zamri, H. M. Akil, Z. A. M. Ishak, and A. Abu Bakar, Polym. Compos., 36, 1224 (2015).

    Article  CAS  Google Scholar 

  24. M. R. Osman, H. M. Akil and Z. A. M. Ishak, Compos. Interfaces, 20, 517 (2013).

    Article  CAS  Google Scholar 

  25. H. M. Akil, M. F. Omar, A. A. M. Marzuki, S. Safiee, Z. A. M. Ishak, and A. Abu Bakar, Mater. Des., 32, 4107 (2011).

    Article  CAS  Google Scholar 

  26. A. A. A. Rashdi, S. M. Sapuan, M. M. H. M. Ahmad, and A. Khalina, Polym. Polym. Compos., 18, 275 (2010).

    CAS  Google Scholar 

  27. M. R. Ishak, Z. Leman, S. M. Sapuan, A. M. M. Edeerozey, and I. S. Othman, “IOP Conf. Series: Materials Science and Engineering”, p.1, IOP Publishing, Bristol, 2010.

    Google Scholar 

  28. C.-L. Chiang, and M. C.-C. Ma, Polym. Degrad. Stabil., 83, 207 (2004).

    Article  CAS  Google Scholar 

  29. ASTM International, “Standard Methods of Evaluating the Properties of Wood-based Fibre and Particle Panel Materials: ASTM D256, D638 and D790”, American Society for Testing and Materials, PA, UnitedStates, 2004.

    Google Scholar 

  30. D. De, B. Adhikari, and D. De, Polym. Adv. Technol., 18, 72 (2007).

    Article  CAS  Google Scholar 

  31. N. Delahaye, S. Marais, J. M. Saiter, and M. Metayer, J. Appl. Polym. Sci., 67, 695 (1998).

    Article  CAS  Google Scholar 

  32. C. H. Lee, M. S. Salit, and M. R. Hassan, Adv. Mater. Sci. Eng., 514036, 1 (2014).

    Google Scholar 

  33. A. Baudry, J. Dufay, N. Regnier, and B. Mortaigne, Polym. Degrad. Stabil., 61, 441 (1998).

    Article  CAS  Google Scholar 

  34. J. M. F. Paiva and E. Frollini, J. Appl. Polym. Sci., 83, 880 (2002).

    Article  CAS  Google Scholar 

  35. W. G. Trindade, W. Hoareau, J. D. Megiatto, I. A. T. Razera, A. Castellan, and E. Frollini, Biomacromolecules, 6, 2485 (2005).

    Article  CAS  Google Scholar 

  36. A. Hassan, L. S. Ken, and M. Jawaid, International J. Polym. Anal. Charact., 18, 137 (2013).

    Article  CAS  Google Scholar 

  37. L. L. Pan, G. Y. Li, Y. C. Su, and J. S. Lian, Polym. Degrad. Stabil., 97, 1801 (2012).

    Article  CAS  Google Scholar 

  38. A. Brenes-Acosta and B. A. Stradi-Granados, Fiber. Polym., 15, 2186 (2014).

    Article  CAS  Google Scholar 

  39. H. Anuar and A. Zuraida, Compos. Pt. B-Eng., 42, 462 (2011).

    Article  Google Scholar 

  40. S. Ozturk, J. Compos. Mater., 44, 1 (2010).

    Article  Google Scholar 

  41. N. G. Andre and Z. A. M. Ishak, Procedia Chemistry, 19, 419 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azman Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marliana, M.M., Hassan, A., Yuziah, M.Y.N. et al. Flame retardancy, Thermal and mechanical properties of Kenaf fiber reinforced Unsaturated polyester/Phenolic composite. Fibers Polym 17, 902–909 (2016). https://doi.org/10.1007/s12221-016-5888-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5888-y

Keywords

Navigation