Skip to main content
Log in

Influence of oxygen plasma pre-treatment on the water repellency of cotton fibers coated with perfluoroalkyl-functionalized polysilsesquioxane

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Oxygen plasma pre-treatment was applied to cotton fabric with the aim of improving the water repellency performance of an inorganic-organic hybrid sol-gel perfluoroalkyl-functionalized polysilsesquioxane coating. Cotton fabric was pre-treated with low-pressure oxygen plasma for different treatment times and operating powers. Afterward, 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) was applied to the cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and modified cotton fibers were characterised using Fourier transform infrared spectroscopy, Xray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water repellency of the SiF-coated fabric samples was evaluated using static and sliding contact angle measurements with water. The results show that the plasma treatment with the shortest treatment time (10 s) and the lowest operating current (0.3 A) increased the atomic oxygen/carbon ratio of the cotton fiber surface from 0.6 to 0.8 and induced the formation of a nano-sized grainy surface. Increasing the plasma treatment time and/or operating current did not intensify the surface changes of the cotton fibers. Such saturation effects were explained by the large influence of reactive oxygen atoms during the plasma treatment. The measured static water contact angles on the surface of the untreated and plasma pre-treated and SiF-coated cotton fabrics showed that the oxygen plasma pre-treatment enabled the increase of the water contact angle from 135° to ≈150°, regardless of the applied plasma treatment time and discharge power. This improvement in the hydrophobicity of the SiF coating was followed by a decrease in the sliding angle of water droplets by more than 10° compared to the plasma untreated and SiF-coated sample characterized by a water sliding angle of 45°. Additionally, measurements of the water sliding angle revealed that the increase of the static contact angle from 149° to 150° corresponded to a drop of the water sliding angle from 33 to 24°, which suggests that the plasma pre-treatment of 20 s at an operating current of 0.3 A produced the best water-repellent performance of the SiF-coated cotton fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Boinovich and A. M. Emelyanenko, Mendeleev Commun., 23, 3 (2013).

    Article  CAS  Google Scholar 

  2. B. Simoncic in “Functional Protective Textiles” (S. Bischof Vukušic Ed.), pp.145–170, Sveucilište u Zagrebu, Tekstilnotehnološki fakultet, 2012.

  3. V. H. Dalvi and P. J. Rossky, Proc. Natl. Acad. Sci. USA, 107, 13603 (2010).

    Article  CAS  Google Scholar 

  4. N. Mino, K. Ogawa, T. Minoda, M. Takatsuka, S. Sha, and T. Moriizumi, Thin Solid Films, 230, 209 (1993).

    Article  CAS  Google Scholar 

  5. J. Vasiljevic, M. Gorjanc, B. Tomšic, B. Orel, I. Jerman, M. Mozetic, A. Vesel, and B. Simoncic, Cellulose, 20, 277 (2013).

    Article  CAS  Google Scholar 

  6. N. A. Ivanova and A. K. Zaretskaya, Appl. Surf. Sci., 257, 1800 (2010).

    Article  CAS  Google Scholar 

  7. M. Houde, A. O. De Silva, D. C. G. Muir, and R. J. Letcher, Environ. Sci. Technol., 45, 7962 (2011).

    Article  CAS  Google Scholar 

  8. C. Lau, K. Anitole, K. Hodes, D. Lai, A. Pfahles-Hutchens, and J. Seed, Toxicol. Sci., 99, 366 (2007).

    Article  CAS  Google Scholar 

  9. J. W. Martin, S. A. Mabury, K. R. Solomon, and D. C. G. Muir, Environ. Toxicol. Chem., 22, 196 (2003).

    Article  CAS  Google Scholar 

  10. R. Renner, Environ. Sci. Technol., 35, 154A (2001).

    Article  CAS  Google Scholar 

  11. B. Tomšic, B. Simoncic, B. Orel, L. Cerne, P. Forte Tavcer, M. Zorko, I. Jerman, A. Vilcnik, and J. Kovac, J. Sol-Gel Sci. Technol., 47, 44 (2008).

    Article  Google Scholar 

  12. M. Periolatto, F. Ferrero, A. Montarsolo, and R. Mossotti, Cellulose, 20, 355 (2013).

    Article  CAS  Google Scholar 

  13. J. Vasiljevic, B. Tomšic, I. Jerman, B. Orel, G. Jakša, J. Kovac, and B. Simoncic, J. Sol-Gel Sci. Technol., 70, 385 (2014).

    Article  CAS  Google Scholar 

  14. B. Bhushan, M. Nosonovsky, and Y. C. Jung in “Nanotribology and Nanomechanics” (B. Bhushan Ed.), pp.995–1072, Springer Berlin, Heidelberg, 2008.

  15. M. Gorjanc, V. Bukošek, M. Gorenšek, and A. Vesel, Text. Res. J., 80, 557 (2010).

    Article  CAS  Google Scholar 

  16. P. Ma, J. Huang, G. Cao, and W. Xu, Fiber. Polym., 11, 941 (2010).

    Article  CAS  Google Scholar 

  17. S. Inbakumar, R. Morent, N. De Geyter, T. Desmet, A. Anukaliani, P. Dubruel, and C. Leys, Cellulose, 17, 417 (2010).

    Article  CAS  Google Scholar 

  18. D. Sun and G. K. Stylios, J. Mater. Process. Technol., 173, 172 (2006).

    Article  CAS  Google Scholar 

  19. K. Vaideki, S. Jayakumar, G. Thilagavathi, and R. Rajendran, Appl. Surf. Sci., 253, 7323 (2007).

    Article  CAS  Google Scholar 

  20. N. A. Ivanova, G. I. Rutberg, and A. B. Philipchenko, Macromol. Chem. Phys., 214, 1515 (2013).

    Article  CAS  Google Scholar 

  21. L. B. Boinovich and A. M. Emelyanenko, Colloid Surf. APhysicochem. Eng. Asp., 481, 167 (2015).

    Article  CAS  Google Scholar 

  22. A. Doliška and M. Kolar, Mater. Technol., 45, 275 (2011).

    Google Scholar 

  23. M. Shen, L. Wang, F. Chen, J.-J. Long, and Y.-N. Rui, J. Clean. Prod., 92, 318 (2015).

    Article  CAS  Google Scholar 

  24. K. Jazbec, M. Šala, M. Mozetic, A. Vesel, and M. Gorjanc, J. Nanomater., 2015, 1 (2015).

    Article  Google Scholar 

  25. K. Arshad, M. Skrifvars, V. Vivod, J. Volmajer Valh, and B. Voncina, Tekstilec, 57, 118 (2014).

    Article  CAS  Google Scholar 

  26. B. Tomšic, B. Simoncic, B. Orel, A. Vilcnik, and H. Spreizer, Carbohydr. Polym., 69, 478 (2007).

    Article  Google Scholar 

  27. T. J. Lenk, V. M. Hallmark, C. L. Hoffmann, J. F. Rabolt, D. G. Castner, C. Erdelen, and H. Ringsdorf, Langmuir, 10, 4610 (1994).

    Article  CAS  Google Scholar 

  28. J. F. Rabolt, T. P. Russell, and R. J. Twieg, Macromolecules, 17, 2786 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Simončič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiljević, J., Gorjanc, M., Jerman, I. et al. Influence of oxygen plasma pre-treatment on the water repellency of cotton fibers coated with perfluoroalkyl-functionalized polysilsesquioxane. Fibers Polym 17, 695–704 (2016). https://doi.org/10.1007/s12221-016-5652-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5652-3

Keywords

Navigation