Skip to main content
Log in

Chemical and physical analysis of cotton fabrics plasma-treated with a low pressure DC glow discharge

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This paper focuses on the modification of cotton fabrics using a low pressure DC glow discharge obtained in air. The influence of different operating parameters such as treatment time, discharge power and operating pressure on the chemical and physical properties of the cotton fabrics is studied in detail. Surface analysis and characterization of the plasma-treated cotton fabrics is performed using vertical wicking experiments, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and weight loss measurements. The cotton fabrics show a significant increase in wicking behaviour; an effect which increases with increasing treatment time, increasing discharge power and increasing pressure. Results also show that low pressure DC glow treatment leads to surface erosion of the cellulose fibres, accompanied by an incorporation of oxygen-containing groups (C–O, C=O, O–C–O and O–C=O) on the cotton fibres. The DC glow treatment has thus the potential to influence not only the chemical but also the physical properties of cotton fabrics and this without the use of water or chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Briggs D (1990) Applications of XPS in polymer technology. In: Briggs D, Seah MP (eds) Practical surface analysis, volume 1: Auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, Chichester, pp 437–484

    Google Scholar 

  • Caiazzo F, Canonico P, Nigro R, Tagliaferri V (1996) Electrode discharge for plasma surface-treatment of polymeric materials. J Mater Process Technol 58:96–99

    Article  Google Scholar 

  • Chen X, Yao L, Xue J, Zhao D, Lan Y, Qian X, Wang CX, Qiu Y (2008) Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites. Appl Surf Sci 255:2864–2868

    Article  CAS  Google Scholar 

  • Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by Ft-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  CAS  Google Scholar 

  • De Geyter N, Morent R, Leys C (2006) Surface modification of a polyester non-woven with a dielectric barrier discharge at medium pressure. Surf Coat Technol 201:2460–2466

    Article  Google Scholar 

  • Dumitrascu N, Borcia C (2006) Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge. Surf Coat Technol 201:1117–1123

    Article  CAS  Google Scholar 

  • Ferrero F (2003) Wettability measurements on plasma treated synthetic fabrics by capillary rise method. Polym Test 22:571–578

    Article  CAS  Google Scholar 

  • Harnett PR, Mehta PN (1984) A survey and comparison of laboratory test methods for measuring wicking. Text Res J 54:471–478

    Article  Google Scholar 

  • Hodak SK, Supasai T, Paosawatyanyong B, Kamlangkla K, Pavarajarn V (2008) Enhancement of the hydrophobicity of silk fabrics by SF6 plasma. Appl Surf Sci 254:4744–4749

    Article  CAS  Google Scholar 

  • Inagaki N, Narushim K, Tuchida N, Miyazaki K (2004) Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces. J Appl Polym Sci B 42:3727–3740

    Article  CAS  Google Scholar 

  • Jocic D, Vilchez S, Topalovic T, Molina R, Navarro A, Jovancic P, Julia MR, Erra P (2005) Effect of low-temperature plasma and chitosan treatment on wool dyeing with acid red 27. J Appl Polym Sci 97:2204–2214

    Article  CAS  Google Scholar 

  • Johansson K (2007) Plasma modification of natural cellulosic fibres. In: Shishoo R (ed) Plasma technologies for textiles. Woodhead Publishing Limited, CRC Press LLC, Cambridge, pp 247–281

    Google Scholar 

  • Karahan HA, Özdogan E (2008) Improvements of surface functionality of cotton fibres by atmospheric plasma treatment. Fibres Polym 9:21–26

    Article  CAS  Google Scholar 

  • Keil M, Rastomjee CS, Rajagopal A, Sotobayashi H, Bradshaw AM, Lamont CLA, Gador D, Buchberger C, Fink R, Umbach E (1998) Argon plasma-induced modifications at the surface of polycarbonate thin films. Appl Surf Sci 125:273–286

    Article  CAS  Google Scholar 

  • Leroux F, Campagne C, Perwuelz A, Gengembre L (2008) Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol. Appl Surf Sci 254:3902–3908

    Article  CAS  Google Scholar 

  • Liston EM (1989) Plasma treatment for improved bonding—a review. J Adh 30:199–218

    Article  CAS  Google Scholar 

  • Liston EM, Martinu L, Wertheimer MR (1993) Plasma surface modification of polymers for improved adhesion—a critical review. J Adhes Sci Technol 7:1091–1127

    Article  CAS  Google Scholar 

  • Mitchell R, Carr CM, Parfitt M, Vickerman JC, Jones C (2005) Surface chemical analysis of raw cotton fibres and associated materials. Cellulose 12:629–639

    Article  CAS  Google Scholar 

  • Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Non-thermal plasma treatment of textiles. Surf Coat Technol 202:3427–3449

    Article  CAS  Google Scholar 

  • Pandiyaraj KN, Selvarajan V (2008) Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. J Mater Process Technol 199:130–139

    Article  CAS  Google Scholar 

  • Poll HU, Schladitz U, Schreiter S (2001) Penetration of plasma effects into textile structures. Surf Coat Technol 142:489–493

    Article  Google Scholar 

  • Ren CS, Wang DZ, Wang YN (2008) Improvement of the graft and dyeability of linen by DBD treatment in ambient air. J Mater Process Technol 206:216–220

    Article  CAS  Google Scholar 

  • Samanta KK, Jassal M, Agrawal AK (2009) Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment. Surf Coat Technol 203:1336–1342

    Article  CAS  Google Scholar 

  • Shi MK, Clouet F (1992) Study of the interactions of model polymer surface with cold plasmas. II. degradation rate versus pressure and gas flow rate. J Appl Polym Sci 46:2063–2074

    Article  CAS  Google Scholar 

  • Sun D, Stylios GK (2004) Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Text Res J 74:751–756

    Article  CAS  Google Scholar 

  • Temmerman E, Akishev Y, Trushkin N, Leys C, Verschuren J (2005) Surface modification with a remote atmospheric pressure plasma: DC glow discharge and surface streamer regime. J Phys D Appl Phys 38:505–509

    Article  CAS  Google Scholar 

  • Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG (2007) XPS and contact angle study of cotton surface oxidation by catalytic bleaching. Colloids Surf A 296:76–85

    Article  CAS  Google Scholar 

  • Toufik M, Mas A, Shkinev V, Nechaev A, Elharfi A, Schue F (2002) Improvement of performances of PET track membranes by plasma treatment. Eur Polym J 38:203–209

    Article  CAS  Google Scholar 

  • Verschuren J, Kiekens P, Leys C (2007) Textile-specific properties that influence plasma treatment, effect creation and effect characterization. Text Res J 77:727–733

    Article  CAS  Google Scholar 

  • Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M (2008) Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf Interface Anal 40:1444–1453

    Article  CAS  Google Scholar 

  • Ward TL, Benerito RR (1982) Modification of cotton by radiofrequency plasma of ammonia. Text Res J 52:256–262

    Article  CAS  Google Scholar 

  • Wong KK, Tao XM, Yuen WM, Yeung KW (2001) Wicking properties of linen treated with low temperature plasma. Textile Res J 71:49–56

    CAS  Google Scholar 

  • Yip J, Chan K, Sin KM, Lau KS (2002) Low temperature plasma-treated nylon fabrics. J Mater Process Technol 123:5–12

    Article  CAS  Google Scholar 

  • Zhang CS, Chen P, Liu D, Wang BC, Li W, Kang XT (2009) Aging behavior of PBO fibres and PBO-fibre-reinforced PPESK composite after oxygen plasma treatment. Surf Interface Anal 41:187–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. Inbakumar would like to thank the Director of the Collegiate Education, Chennai – 600 006, Tamilnadu for providing a scholarship for a research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Morent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inbakumar, S., Morent, R., De Geyter, N. et al. Chemical and physical analysis of cotton fabrics plasma-treated with a low pressure DC glow discharge. Cellulose 17, 417–426 (2010). https://doi.org/10.1007/s10570-009-9369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9369-y

Keywords

Navigation