Skip to main content
Log in

Study on melt-blown processing, web structure of polypropylene nonwovens and its BTX adsorption

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Petroleum hydrocarbons can have adverse impacts on the environment and human health especially when they exist in the form of emulsion and aqueous solution. Nonwovens prepared by melt-blown method are a potential candidate for the removal of petroleum hydrocarbons. In this study, the processing-structure-oil sorption relationships of the PP (polypropylene) melt-blown nonwovens were investigated. Besides, the kinetics and mechanism of toluene sorption in simulated fire-fighting wastewater on the optimized prepared PP melt-blown nonwovens were studied at the static and dynamic conditions. The results showed that the web structure can be effectively controlled by adjusting the hot air temperature, metering pump speed and distance of collector to die to obtain an average fiber diameter of 3.0-10.5 μm, surface area of 0.5-1.5 m2/g and porosity of 71.0-99.0 %. The sorption capacity for pure BTX medium increased with the decreasing fiber diameter and increasing porosity. The pseudo-second-order kinetic model better fitted the experimental data to describe the sorption of emulsified and dissolved form of toluene at static and dynamic conditions. The toluene sorption can be a combination of adsorption and capillarity, the contribution of which was about 1:14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Asadpour, N. B. Sapari, M. H. Isa, S. Kakooei, and K. U. Orji, Fiber. Polym., 16, 1830 (2015).

    Article  CAS  Google Scholar 

  2. D. X. Wu, L. L. Fang, Y. M. Qin, W. J. Wu, C. M. Mao, and H. T. Zhu, Mar. Pollut. Bull., 84, 263 (2014).

    Article  CAS  Google Scholar 

  3. O. S. Okay, P. Özdemir, and S. D. Yakan, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 46, 909 (2011).

    Article  CAS  Google Scholar 

  4. T. Dong, G. B. Xua, and F. M. Wang, J. Hazard. Mater., 296, 101 (2015).

    Article  CAS  Google Scholar 

  5. C. B. Vidal, G. S. C. Raulino, A. L. Barros, A. C. A. Lima, J. P. Ribeiro, M. J. R. Pires, and R. F. Nascimento, J. Environ. Manage., 112, 178 (2012).

    Article  CAS  Google Scholar 

  6. F. Aguilera, J. Méndez, E. Pásaro, and B. Laffon, J. Appl. Toxicol., 30, 291 (2010).

    CAS  Google Scholar 

  7. Q. X. Lin, I. A. Mendelssohn, K. Carney, S. M. Miles, N. P. Bryner, and W. D. Walton, Environ. Sci. Technol., 39, 1855 (2005).

    Article  CAS  Google Scholar 

  8. J. Whitfield, Nature, 422, 464 (2003).

    Article  CAS  Google Scholar 

  9. T. Lim and X. F. Huang, Chemosphere, 66, 955 (2007).

    Article  CAS  Google Scholar 

  10. H. T. Zhu, S. S. Qiu, W. Jiang, D. X. Wu, and C. Y. Zhang, Environ. Sci. Technol., 45, 4527 (2011).

    Article  CAS  Google Scholar 

  11. C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, Polymer, 48, 3306 (2007).

    Article  CAS  Google Scholar 

  12. H. M. Choi and J. P. Moreau, Microsc. Res. Tech., 25, 447 (1993).

    Article  CAS  Google Scholar 

  13. G. Deschamps, H. Caruel, M. E. Borredon, C. Bonnin, and C. Vignoles, Environ. Sci. Technol., 37, 1013 (2003).

    Article  CAS  Google Scholar 

  14. F. Yu, J. Ma, and Y. Q. Wu, J. Hazard. Mater., 192, 1370 (2011).

    Article  CAS  Google Scholar 

  15. J. Y. Lin, Y. W. Shang, B. Ding, J. M. Yang, J. Y. Yu, and S. S. Al-Deyab, Mar. Pollut. Bull., 64, 347 (2012).

    Article  CAS  Google Scholar 

  16. F. Yu, Y. Q. Wu, X. M. Li, and J. Ma, J. Agric. Food Chem., 60, 12245 (2012).

    Article  CAS  Google Scholar 

  17. M. D. Teli and S. P. Valia, Fiber. Polym., 14, 915 (2013).

    Article  CAS  Google Scholar 

  18. J. T. Wang and A. Q. Wang, Fiber. Polym., 14, 1834 (2013).

    Article  CAS  Google Scholar 

  19. Z. N. Sun, H. P. Fu, and R. Y. Hong, Fine Chem., 25, 109 (2008).

    CAS  Google Scholar 

  20. R. L. Shambaugh, Ind. Eng. Chem. Res., 27, 2363 (1988).

    Article  CAS  Google Scholar 

  21. V. T. Marla and R. L. Shambaugh, Ind. Eng. Chem. Res., 42, 6993 (2003).

    Article  CAS  Google Scholar 

  22. R. R. Bresee and U. A. Qureshi, J. Eng. Fiber Fabr., 1, 32 (2006).

    Google Scholar 

  23. K. Zhang, “Interface of Polymer Science”, 1st ed., pp.71–72, China Petrochemical Press, Beijing, 1997.

    Google Scholar 

  24. W. J. Wei, Q. Yu, and Y. H. Cui, “Polymer Chemistry and Physics”, 1st ed., pp.199–200, Chemical Industry Press, Beijing, 2009.

    Google Scholar 

  25. D. Ceylan, S. Dogu, B. Karacik, S. D. Yakan, O. S. Okay, and O. Okay, Environ. Sci. Technol., 43, 3846 (2009).

    Article  CAS  Google Scholar 

  26. T. Sun and R. Thom, J. Elastomer Plast., 42, 129 (2010).

    Article  CAS  Google Scholar 

  27. N. L. Cheng, “Solvent Handbook”, 4th ed., pp.201–205, Chemical Industry Press, Beijing, 2007.

    Google Scholar 

  28. C. P. Moura, C. B. Vidal, A. L. Barros, L. S. Costa, L. C. G. Vasconcellos, F. S. Dias, and R. F. Nascimento, J. Colloid Interface Sci., 363, 626 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuji Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Liang, H., Luo, Z. et al. Study on melt-blown processing, web structure of polypropylene nonwovens and its BTX adsorption. Fibers Polym 17, 257–265 (2016). https://doi.org/10.1007/s12221-016-5592-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5592-y

Keywords

Navigation