Skip to main content
Log in

Thermo-acoustic behaviour of 3D knitted spacer fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nowadays, the utilization of 3-Dimensional (3D) porous textile materials by the civil and mechanical engineers for improved thermo-acoustic environment has widened the research scope. Since spacer textile fabrics have superior thermal and acoustic characteristics compared to conventional woven/knitted structures or nonwovens due to their wonderful 3D sandwich pattern and porous nature. Hence this research paper presents an experimental investigation on the sound absorption behavior and thermal properties of 3D knitted spacer fabrics. The Sound absorption coefficient (SAC) and thermal conductivity (K) were measured using two microphone impedance tube and thermal conductivity analyzer (TCi). Moreover, tortuosity of the spacer fabrics was carefully calculated analytically and compared with experimental results. This study deeply discusses the influence of material parameters and characteristics on acoustic properties of 3D spacer knitted fabrics. The results show that the fabric surface property, porosity, flow resistivity and tortuosity have significant effects on the sound absorbability as well as thermal conductivity. Finally the paper describes regression equations and correlation between Noise reduction coefficient (NRC) and Thermal conductivity (K) for this knitted spacer fabrics. The equation is useful to determine NRC value by knowing the K-value and vice versa for designing the material for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Orr, “Handbook for Industrial Noise Control”, Chap.5, p.43, National Aeronautics and Space Administration, United States, 1981.

    Google Scholar 

  2. K. Attenborough, Phys. Rep., 82, 179 (1982).

    Article  Google Scholar 

  3. B. J. Smith, R. J. Peters, and Owens, “Acoustics and Noise Control”, 2nd ed., pp.44–46, Addison Wesely Longman Ltd., England, 1996.

    Google Scholar 

  4. J. Allard and Y. Champoux, J. Acoust. Soc. Am., 91, 3346 (1992).

    Article  Google Scholar 

  5. Z. Hong, L. Bo, H. Guangsu, and H. A. Jia, J. Sound Vib. 304, 400 (2007).

    Article  Google Scholar 

  6. R. Mishra, B. K. Behera, and B. P. Pal, J. Text. Inst., 103, 320 (2012).

    CAS  Google Scholar 

  7. T. Dias and R. Monaragala, Meas. Sci. Technol., 17, 2499 (2006).

    Article  CAS  Google Scholar 

  8. N. Atalla, R. Panneton, F. C. Sgard, and X. Olny, J. Sound Vib., 243, 659 (2001).

    Article  Google Scholar 

  9. Y. E. Xiaohua, H. Hu, and X. Feng, J. Ind. Text., 37, 213 (2008).

    Article  Google Scholar 

  10. E. Ghorbani, H. Hasani, H. Rafeian, and B. Hashemibeni, Int. J. Prev. Med., 4, 761 (2013).

    Google Scholar 

  11. B. K. Behera and R. Mishra, Indian J. Fibre Text., 32, 72 (2007).

    CAS  Google Scholar 

  12. B. K. Behera, A. K. Pattanayak, and R. Mishra, J. Text. Eng., 54, 103 (2008).

    Article  Google Scholar 

  13. T. Dias, R. Monaragala, P. Needham, and E. Lay, Meas. Sci. Technol., 18, 2657 (2007).

    Article  CAS  Google Scholar 

  14. Y. Liu and H. Hu, Text. Res. J., 80, 1949 (2010).

    Article  CAS  Google Scholar 

  15. R. K. Srinvastav, R. L. Dhabal, B. M. Suman, A. Saini, and P. Panchal, J. Sci. Ind. Res., 65, 232 (2006).

    Google Scholar 

  16. R. Mishra, J. Militky, B. K. Behera, and V. Banthia, J. Text. Inst., 103, 1255 (2012).

    Article  Google Scholar 

  17. A. Veerakumar and N. Selvakumar, Indian J. Fibre Text., 37, 385 (2012).

    CAS  Google Scholar 

  18. P. H. Mareze, R. P. Becker, A. Lenzi, and C. Pellegrini, Proc. Int. Compr. Engg. Conf., 95, 1315 (2012).

    Google Scholar 

  19. F. Fohr, D. Parmentier, B. Castagnede, and M. Henry, J. Acoust. Soc. Am., 123, 3118 (2008).

    Article  Google Scholar 

  20. K. Attenborough and L. V. Istvan in “Noise and Vibration Control Engineering”, 2nd ed. (I. L. Ver and L. L. Beranek Eds.), pp.215–277, Wiley, Hoboken, NJ, 2006.

  21. B. P. Dash, B. K. Behera, R. Mishra, and J. Militky, J. Text. Inst., 104, 312 (2013).

    Article  Google Scholar 

  22. N. Oglakcioglu and A. Marmarali, Fibres. Text. East. Eur., 15, 64 (2007).

    Google Scholar 

  23. A. Harris and D. N. Sorensen, J. Pyrotech., 25, 49 (2007).

    Google Scholar 

  24. J. Cha, J. Seo, and S. Kim, J. Therm. Anal. Calorim., 109, 295 (2012).

    Article  CAS  Google Scholar 

  25. D. Kuvandykova, C-Therm. Technol., 7, 1 (2010).

    Google Scholar 

  26. Y. T. Takahashi, R. Otsuru, and R. Tomiku, Appl. Acoust., 66, 845 (2005).

    Article  Google Scholar 

  27. R. Mishra, R. Tiwari, M. Marsalkova, J. Militky, and B. K. Behera, J. Text. Inst., 103, 1361 (2012).

    Article  CAS  Google Scholar 

  28. H. S. Seddeq, Aust. J. Basic Appl. Sci., 3, 4610 (1991).

    Google Scholar 

  29. H. S. Seddeq, N. M. Aly, and M. H. Elshakankery, J. Ind. Text., 4, 56 (2013).

    Article  Google Scholar 

  30. M. Coates and M. Kierzkowski, Tech. Text. Int., 11, 15 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, V., Mishra, R., Militky, J. et al. Thermo-acoustic behaviour of 3D knitted spacer fabrics. Fibers Polym 16, 2467–2476 (2015). https://doi.org/10.1007/s12221-015-5602-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5602-5

Keywords

Navigation