Skip to main content
Log in

Kinetics of poly(ethylene terephthalate) fiber glycolysis in ethylene glycol

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The glycolysis of poly(ethylene terephthalate) (PET) fiber is carried out using excess ethylene glycol (EG) in the presence of Zn/Al mixed oxides. The effects of the weight ratio of EG to PET, the weight ratio of catalyst to PET, reaction temperature and reaction time on the yield of bis(hydroxyethyl terephthalate)(BHET) are investigated. The conversion of PET and yield of bis(2-hydroxyethyl terephthalate) (BHET) reach about 92.6 % and 82 % under the optimal experimental conditions. The properties of the glycolysis products have been characterized by scanning electron microscopy (SEM), infrared spectroscopy analysis (IR), differential scanning calorimeter (DSC), thermogravimetric analysis (TG) and high performance liquid chromatography (HPLC). An evolution of the glycolysis reaction is proposed. In addition, the kinetic of PET fiber is investigated. The results indicate that this glycolysis process is a first-order kinetic reaction and the activation energy is 79.3 kJ/mol, which is lower compared to the same reaction process using PET flake from the soft drink bottle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Koo, G. S. Chang, S. H. Kim, W. G. Hahm, and S. Y. Park, Fiber. Polym., 14, 2087 (2013).

    Google Scholar 

  2. V. Sinha, M. R. Patel, and J. V. Patel, J. Polym. Environ., 18, 8 (2010).

    Article  CAS  Google Scholar 

  3. G. P. Karayannidis, A. P. Chatziavgoustis, and D. S. Achilias, Adv. Polym. Tech., 21, 250 (2002).

    Article  CAS  Google Scholar 

  4. F. S. Liu, X. Cui, S. T. Yu, Z. Li, and X. P. Ge, J. Appl. Polym. Sci., 114, 3561 (2009).

    Article  CAS  Google Scholar 

  5. D. E. Nikles and M. S. Farahat, Macromol. Mater. Eng., 290, 13 (2005).

    Article  CAS  Google Scholar 

  6. G. X. Xi, M. X. Lu, and C. Sun, Polym. Degrad. Stabil., 87, 117 (2005).

    Article  CAS  Google Scholar 

  7. H. Wang, Y. Q. Liu, Z. X. Li, X. P. Zhang, S. J. Zhang, and Y. Q. Zhang, Eur. Polym. J., 45, 1535 (2009).

    Article  CAS  Google Scholar 

  8. A. Aguado, L. Martinez, L. Becerra, M. Arieta-araunabena, S. Arnaiz, A. Asueta, and I. Robertson, J. Mater. Cycles. Waste. Manag., 16, 201 (2014).

    Article  CAS  Google Scholar 

  9. P. Potiyaraj, K. Klubdee, and T. Limpiti, J. Appl. Polym. Sci., 104, 2536 (2007).

    Article  CAS  Google Scholar 

  10. V. Pimpan, R. Sirisook, and S. Chuayjuljit, J. Appl. Polym. Sci., 88, 788 (2003).

    Article  CAS  Google Scholar 

  11. M. R. Patel, J. V. Patel, and V. K. Sinha, Polym. Degrad. Stabil., 90, 111 (2005).

    Article  CAS  Google Scholar 

  12. S. R. Shukla, A. M. Harad, and L. S. Jawale, Waste. Manage., 28, 51 (2008).

    Article  CAS  Google Scholar 

  13. G. P. Karayannidis, D. S. Achilias, I. D. Sideridou, and D. N. Bikiaris, Eur. Polym. J., 201, 41 (2005).

    Google Scholar 

  14. S. Baliga and W. T. Wong, J. Polym. Sci. Pol. Chem., 27, 2071 (1989).

    Article  CAS  Google Scholar 

  15. F. F. Chen, G. H. Wang, W. Li, and F. Yang, Ind. Eng. Chem. Res., 52, 565 (2013).

    Article  CAS  Google Scholar 

  16. F. F. Chen, F. Yang, G. H. Wang, and W. Li, J. Appl. Polym. Figure 10. Kinetic expression for the conversion of PET. Figure 11. Arrhenius plots of the apparent rate constant. Sci., 131, 142 (2014).

    Google Scholar 

  17. F. F. Chen, G. H. Wang, C. Shi, Y. C. Zhang, L. Zhang, W. Li, and F. Yang, J. Appl. Polym. Sci., 127, 2809 (2013).

    Article  CAS  Google Scholar 

  18. M. Ghaemy and K. Mossaddegh, Polym. Degrad. Stabil., 90, 570 (2005).

    Article  CAS  Google Scholar 

  19. T. Yoshioka, T. Motoki, and A. Okuwaki, Ind. Eng. Chem. Res., 40, 75 (2001).

    Article  CAS  Google Scholar 

  20. M. Imran, B. K. Kim, M. Han, B. G. Cho, and D. H. Kim, Polym. Degrad. Stabil., 95, 1686 (2010).

    Article  CAS  Google Scholar 

  21. R. L. Fonseca, I. D. Ingunza, B. D. Rivas, S. Arnaiz, and J. I. Gutierrez-Ortiz, Polym. Degrad. Stabil., 95, 1022 (2010).

    Article  Google Scholar 

  22. J. D. Badia, A. M. Felipe, L. S. Blasco, and A. R. Greus, J. Anal. Appl. Pyrolysis, 99, 191 (2013).

    Article  CAS  Google Scholar 

  23. N. Dimitrov, L. K. Krehula, A. P. Sirocic, and Z. H. Murgic, Polym. Degrad. Stabil., 98, 979 (2013).

    Article  Google Scholar 

  24. A. S. Goje and S. Mishra, Macromol. Mater. Eng., 288, 326 (2003).

    Article  CAS  Google Scholar 

  25. D. Kim, B. K. Kim, Y. Cho, M. Han, and B. S. Kim, Ind. Eng. Chem. Res., 48, 685 (2009).

    Article  CAS  Google Scholar 

  26. D. Kim, B. K. Kim, Y. Cho, M. Han, and B. S. Kim, Ind. Eng. Chem. Res., 48, 6591 (2009).

    Article  CAS  Google Scholar 

  27. R. Lopez-Fonseca, I. Duque-Ingunza, B. D. Rivas, L. Flores-Giraldo, and J. I. Gutierrez-Ortiz, Chem. Eng. J., 168, 312 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhou, Q., Bu, R. et al. Kinetics of poly(ethylene terephthalate) fiber glycolysis in ethylene glycol. Fibers Polym 16, 1213–1219 (2015). https://doi.org/10.1007/s12221-015-1213-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1213-4

Keywords

Navigation