Skip to main content
Log in

Effect of peroxide and softness modification on properties of ramie fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ramie fiber is one of the natural cellulose fibers that have undergone rapid development due to its good performance. This study confirmed that hydrogen peroxide and isopropyl alcohol can be used as very efficient agents for simultaneous removal of non-cellulosic substances and improvement of ramie fiber properties. The factors influencing the properties of modified fiber with combined chemicals were investigated. Optimum treatment conditions were achieved at 85 °C, 60 min, pH 11.0, hydrogen peroxide concentration 7 %, and isopropyl alcohol concentration 4 %. SEM, XRD, and FT-IR were used to elucidate the effects of preparation and modification. Results showed that fiber preparation and chemical modification process in the same bath solution could successfully remove most of the gummy materials. The treated fibers demonstrated improved softness, elongation, and fineness properties as compared to the alkali or peroxide method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).

    Article  CAS  Google Scholar 

  2. H. Kargarzadeh, I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin, and R. M. Sheltami, Cellulose, 19, 855 (2012).

    Article  CAS  Google Scholar 

  3. P. V. Joseph, K. Joseph, and S. Thomas, Compos. Sci. Tech., 59, 1625 (1999).

    Article  CAS  Google Scholar 

  4. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).

    Article  CAS  Google Scholar 

  5. X.-S. Fan, Z.-W. Liu, Z.-T. Liu, and J. Lu, Text. Res. J., 80, 2046 (2010).

    Article  CAS  Google Scholar 

  6. H. K. Shin, J. P. Jeun, H. B. Kim, and P. H. Kang, Radiat. Phys. Chem., 81, 936 (2012).

    Article  CAS  Google Scholar 

  7. D. Ray, M. Das, and D. Mitra, J. Appl. Polym. Sci., 123, 1348 (2012).

    Article  CAS  Google Scholar 

  8. V. Tserki, N. E. Zafeiropoulos, F. Simon, and C. Panayiotou, Compos. Part A-Appl. S., 36, 1110 (2005).

    Article  Google Scholar 

  9. C. Chen, M. Cho, B. W. Kim, J. D. Nam, and Y. Lee, J. Ind. Eng. Chem., 18, 1107 (2012).

    Article  CAS  Google Scholar 

  10. A. Rachini, M. L. Troedec, C. Peyratout, and A. Smith, J. Appl. Polym. Sci., 123, 601 (2012).

    Article  CAS  Google Scholar 

  11. J. Milanovic, M. Kostic, P. Milanovic, and P. Skundric, Ind. Eng. Chem. Res., 51, 9750 (2012).

    Article  CAS  Google Scholar 

  12. G. Rodionova, M. Lenes, Ø. Eriksen, and Ø. Gregersen, Cellulose, 18, 127 (2011).

    Article  CAS  Google Scholar 

  13. L. Segal, J. J. Greely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  14. W. Y. Tao, J. P. Moreau, and T. A. Calamari, Tappi J., 78, 165 (1995).

    CAS  Google Scholar 

  15. J. Chen, J. Yi, P. Sun, Z.-T. Liu, and Z.-W. Liu, Cellulose, 16, 1133 (2009).

    Article  CAS  Google Scholar 

  16. K. Vizárová, S. Kirschnerová, F. Kačík, A. Briškárová, Š. Šutý, and S. Katuščák, Chem. Papers, 66, 1124 (2012).

    Article  Google Scholar 

  17. C. Li, R. Chen, X. Zhang, J. Xiong, Y. Zheng, and W. Dong, Fiber. Polym., 12, 345 (2011).

    Article  CAS  Google Scholar 

  18. H.-T. Chang, T.-F. Yeh, and S.-T. Chang, Polym. Degrad. Stab., 77, 129 (2002).

    Article  CAS  Google Scholar 

  19. X. Colom, F. Carrasco, P. Pages’c, and J. Canavate, Compos. Sci. Tech., 63, 161 (2003).

    Article  CAS  Google Scholar 

  20. H. Tylli, I. Forsskåhl, and C. Olkkonen, J. Photochem. Photobio. A: Chem., 76, 143 (1993).

    Article  CAS  Google Scholar 

  21. C. G. Hoyos, V. A. Alvarez, P. G. Rojo, and A. Vázquez, Fiber. Polym., 13, 632 (2012).

    Article  CAS  Google Scholar 

  22. Y. Liu and H. Hu, Fiber. Polym., 9, 735 (2008).

    Article  CAS  Google Scholar 

  23. M. H. Lee, H. S. Park, K. J. Yoon, and P. J. Hauser, Text. Res. J., 74, 146 (2004).

    Article  CAS  Google Scholar 

  24. E. Shina and S. K. Rout, Bull. Mater. Sci., 32, 65 (2009).

    Article  Google Scholar 

  25. M. A. S. Spinacé, C. S. Lambert, K. K. G. Fermoselli, and M.-A. De Paoli, Carbohyd. Polym., 77, 47 (2009).

    Article  Google Scholar 

  26. H. Y. Choi and J. S. Lee, Fiber. Polym., 13, 217 (2012).

    Article  CAS  Google Scholar 

  27. S. Nam and A. N. Netravali, Fiber. Polym., 7, 372 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongwen Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yu, C. Effect of peroxide and softness modification on properties of ramie fiber. Fibers Polym 15, 2105–2111 (2014). https://doi.org/10.1007/s12221-014-2105-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2105-8

Keywords

Navigation