Skip to main content
Log in

Evidence for the impression of phase behavior of nonsolvent/solvent/polymer ternary system on morphology of polyethersulfone electrospun nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polyethersulfone (PES) nanofibers are produced by electrospinning solutions of PES/dimethylforamide (DMF), PES/N-methylpyrrolidone (NMP) and PES/(NMP:DMF) (of different NMP:DMF ratios) at temperature of 40 °C and various levels of relative humidity (RH). The influence of environmental conditions on bead formation as well as surface and interior morphologies of electrospun fibers is discussed through the phase diagram of H2O/DMF/PES and H2O/NMP/PES systems. The former case has small miscibility area while the latter one has large of which. The results demonstrate the contribution of RH of operating environment to morphology evolution of nanofibers. If the size of miscibility area increases e.g. H2O/NMP/PES system, a higher values of RH is needed to stabilize the formation of fibers. For this system, low level of humidity leads to develop beads as well as bead-on-string morphology. Adding the second solvent i.e. DMF into the PES/NMP solution shifts the binodal boundary toward the polymer-solvent side meaning a smaller miscibility area. In consequence, formation of fiber can be stabilized under broad range of humidity levels i.e. from low to high level of humidity. Implications regarding formation of surface pores by manipulating phase behavior of ternary system as well as RH of ambient conditions are discussed related to physico-chemical nature of solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Formhals, U. S. Patent, 1975504 (1934).

    Google Scholar 

  2. G. Taylor, Proc. Roy. Soc. Lond. A., 313, 453 (1969).

    Article  Google Scholar 

  3. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids, 13, 2201 (2001).

    Article  CAS  Google Scholar 

  4. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids, 13, 2221 (2001).

    Article  CAS  Google Scholar 

  5. I. Ahmed, A. Idris, M. Y. Noordin, and R. Rajput, Ind. Eng. Chem. Res., 50, 2272 (2011).

    Article  CAS  Google Scholar 

  6. Z. Tang, C. Qiu, J. R. McCutcheon, K. Yoon, H. Ma, D. Fang, E. Lee, C. Kopp, B. S. Hsiao, and B. Chu, J. Polym. Sci. Pol. Phys., 47, 2288 (2009).

    Article  CAS  Google Scholar 

  7. S. Sh. Homaeigohar, K. Buhr, and K. Ebert, J. Membrane Sci., 365, 68 (2010).

    Article  CAS  Google Scholar 

  8. S. Sh. Homaeigohar and M. Elbahri, J. Colloid. Interf. Sci., 372, 6 (2012).

    Article  CAS  Google Scholar 

  9. I. Shahabi, V. Haddadi-Asl, E. Seyedjafari, F. Babaeijandaghi, and M. Soleimani, Biochem. Bioph. Res. Co., 382, 129 (2009).

    Article  Google Scholar 

  10. Y. Zhang, Q. Wei, Q. Zhang, J. Li, J. Yang, and C. Zhao, Sep. Sci. Technol., 46, 1615 (2011).

    Article  CAS  Google Scholar 

  11. J. S. Travis, A. Horst, and von Recum, Biomaterials, 29, 1989 (2008).

    Article  Google Scholar 

  12. V. Beachley and X. Wen, Mater. Sci. Eng. C Mater. Biol. Appl., 29, 2448 (2009).

    Article  CAS  Google Scholar 

  13. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Tech., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  14. A. Podgorski, A. Bałazy, and L. Gradon, Chem. Eng. Sci., 61, 6804 (2006).

    Article  CAS  Google Scholar 

  15. W. W. F. Leung, C. H. Hung, and P. T. Yuen, Sep. Purif. Technol., 71, 30 (2010).

    Article  CAS  Google Scholar 

  16. R. Ramaseshan and S. Ramakrishna, J. Am. Ceram. Soc., 90, 1836 (2007).

    Article  CAS  Google Scholar 

  17. Y. Miyauchi, B. Ding, and S. Shiratori, Nanotechnology, 17, 5151 (2006).

    Article  CAS  Google Scholar 

  18. J. Zheng, A. He, J. Li, J. Xu, and C. C. Han, Polymer, 47, 7095 (2006).

    Article  CAS  Google Scholar 

  19. A. C. Patel, Sh. Li, Ce Wang, W. Zhang, and Y. Wei, Chem. Mater., 19, 1231 (2007).

    Article  CAS  Google Scholar 

  20. Y. Zhang, J. Li, G. An, and X. He, Sensor. Actuat. B-Chem. 144, 43 (2010).

    Article  CAS  Google Scholar 

  21. S. Megelski, J. S. Stephens, D. Bruce Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002).

    Article  CAS  Google Scholar 

  22. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer, 45, 2017 (2004).

    Article  CAS  Google Scholar 

  23. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, and P. Supaphol, Eur. Polym. J., 41, 409 (2005).

    Article  CAS  Google Scholar 

  24. C. J. Luo, M. Nangrejo, and M. Edirisinghe, Polymer, 51, 1654 (2010).

    Article  CAS  Google Scholar 

  25. J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Polymer, 47, 4789 (2006).

    Article  CAS  Google Scholar 

  26. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 573 (2004).

    Article  CAS  Google Scholar 

  27. C. L. Pai, M. C. Boyce, and G. C. Rutledge, Macromolecules, 42, 2102 (2009).

    Article  CAS  Google Scholar 

  28. S. D. Vrieze, T. V. Camp, A. Nelvig, B. Hagstrom, P. Westbroek, and K. D. Clerck, J. Mater. Sci., 44, 1357 (2009).

    Article  Google Scholar 

  29. S. Tripatanasuwan, Z. Zhong, and D. H. Reneker, Polymer, 48, 5742 (2007).

    Article  CAS  Google Scholar 

  30. J. Zheng, H. Zhang, Z. Zhao, and C. C. Han, Polymer, 53, 546 (2012).

    Article  CAS  Google Scholar 

  31. Z. Qi, H. Yu, Y. Chen, and M. Zhu, Mater. Lett., 63, 415 (2009).

    Article  CAS  Google Scholar 

  32. X. Yu, H. Xiang, Y. Long, N. Zhao, X. Zhang, and J. Xu, Mat. Lett., 64, 2407 (2010).

    Article  CAS  Google Scholar 

  33. H. Tompa, “Polymer Solution”, London, Butterworth, 1956.

    Google Scholar 

  34. L. Yilmaz and A. J. McHugh, J. Appl. Polym. Sci., 31, 997 (1986).

    Article  CAS  Google Scholar 

  35. F. W. Altena and C. A. Smolders, Macromolecules, 15, 1491 (1982).

    Article  CAS  Google Scholar 

  36. M. Karimi, W. Albrecht, M. Heuchel, M. H. Kish, J. Frahn, T. H. Weigel, D. Hofmann, H. Modarress, and A. Lendlein, J. Membrane Sci., 265, 1 (2005).

    Article  CAS  Google Scholar 

  37. M. Karimi, W. Albrecht, M. Heuchel, T. H. Weigel, and A. Lendlein, Polymer, 49, 2587 (2008).

    Article  CAS  Google Scholar 

  38. R. M. Boom, Ph. D. Dissertation, University of Twente, Enschede, The Netherlands, 1992.

    Google Scholar 

  39. M. Karimi, M. Heuchel, W. Albrecht, and D. Hofmann, J. Membrane Sci., 292, 80 (2007).

    Article  CAS  Google Scholar 

  40. C. Barth, R. Horst, and B. A. Wolf, J. Chem. Thermodyn, 30, 641 (1998).

    Article  CAS  Google Scholar 

  41. H. C. Park, Y. P. Kim, H. Y. Kim, and Y. S. Kang, J. Membrane Sci., 156, 169 (1999).

    Article  Google Scholar 

  42. S. P. Nunes and T. Inoue, J. Membrane Sci., 111, 93 (1996).

    Article  CAS  Google Scholar 

  43. C. Barth and B. A. Wolf, Macromol. Chem. Phys., 201, 365 (2000).

    Article  CAS  Google Scholar 

  44. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, Polymer, 44, 4029 (2003).

    Article  CAS  Google Scholar 

  45. G. Eda and S. Shivkumar, J. Appl. Polym. Sci., 106, 475 (2007).

    Article  CAS  Google Scholar 

  46. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer, 45, 2017 (2004).

    Article  CAS  Google Scholar 

  47. A. L. Yarin, “Free Liquid Jets and Films: Hydrodynamics and Rheology”, Longman Scientific and Technical, New York, 1993.

    Google Scholar 

  48. L. Wannatong, A. Sirivat, and P. Supaphol, Polym. Int., 53, 1851 (2004).

    Article  CAS  Google Scholar 

  49. J. A. Riddick and W. B. Bunger, “Organic Solvents”, 3rd ed., Vol. II, pp.454–475, Wiley-Interscience, New York, 1970.

    Google Scholar 

  50. G. P. Johari, A. Hallbrucker, and E. Mayer, Nature, 330, 552 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashandi, H., Karimi, M. Evidence for the impression of phase behavior of nonsolvent/solvent/polymer ternary system on morphology of polyethersulfone electrospun nanofibers. Fibers Polym 15, 1375–1386 (2014). https://doi.org/10.1007/s12221-014-1375-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1375-5

Keywords

Navigation