Skip to main content
Log in

Durability study of a ramie-fiber reinforced phenolic composite subjected to water immersion

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the present paper, ramie fiber reinforced polymer (RFRP) plates prepared by hot compression process were subjected to water immersion at 20 oC and 40 oC for four weeks, and the variation of water uptake and mechanical properties with immersion time were investigated. It was found that the saturated water content and the coefficient of diffusion in RFRP were much higher than those in synthetic fiber based composites, due to the strong hydrophilic characteristic of the ramie fiber. After fully drying of the immersed samples, mass loss from 1.6 % to 3.6 % was found, indicating occurrence of a serious hydrolysis of the resin and the ramie fibers. After a short term of immersion (i.e., 1 day), RFRP showed a remarkable deterioration in the flexural and short beam shear properties. Further increase of the immersion time, the degradation rate of the mechanical properties was much reduced. After fully drying, the mechanical properties of the samples can be recovered to some extent, but still much less than the original values. The variation of mechanical property as a function of the water uptake content exhibits three stages (i.e., dramatic reduction, leveling off and quick decrease again). This may be due to the sequent occurrence of the degradation of natural fibers, fiber debonding and hydrolysis of the fiber and resin during immersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Rossignolo, M. V. C. Agnesini, and J. A. Morais, Cement and Concrete Composites, 25, 77 (2003).

    Article  CAS  Google Scholar 

  2. Y. Li, Z. Lin, A. Jiang, and G. Chen, Materials & Design, 24, 177 (2003).

    Article  CAS  Google Scholar 

  3. E. Schubert, M. Klassen, I. Zerner, C. Walz, and G. Sepold, J. Mater. Process. Technol., 115, 2 (2001).

    Article  Google Scholar 

  4. M. Motavalli, C. Czaderski, and K. Pfyl-Lang, J. Compos. Constr., 15, 194 (2011).

    Article  Google Scholar 

  5. G. Xian, R. Walter, and F. Haupert, Compos. Sci. Technol., 66, 3199 (2006).

    Article  CAS  Google Scholar 

  6. H.-Y. Kim, Y.-H. Park, Y.-J. You, and C.-K. Moon, Compos. Struct., 83, 37 (2008).

    Article  Google Scholar 

  7. S. S. Pendhari, T. Kant, and Y. M. Desai, Compos. Struct., 84, 114 (2008).

    Article  Google Scholar 

  8. Y. Li, Y.-W. Mai, and L. Ye, Compos. Sci. Technol., 60, 2037 (2000).

    Article  CAS  Google Scholar 

  9. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).

    Article  CAS  Google Scholar 

  10. G. Ramakrishna and T. Sundararajan, Cement and Concrete Composites, 27, 575 (2005).

    Article  CAS  Google Scholar 

  11. K. G. Kaveline, N. S. Ermolaeva, and P. V. Kandachar, Compos. Sci. Technol., 66, 160 (2006).

    Article  CAS  Google Scholar 

  12. W. Wang, M. Sain, and P. A. Cooper, Compos. Sci. Technol., 66, 379 (2006).

    Article  CAS  Google Scholar 

  13. F. R. Cichocki Jr and J. L. Thomason, Compos. Sci. Technol., 62, 669 (2002).

    Article  CAS  Google Scholar 

  14. M. Sain, P. Suhara, S. Law, and A. Bouilloux, J. Reinf. Plast. Compos., 24, 121 (2005).

    Article  CAS  Google Scholar 

  15. J. Müssig, S. Rau, and A. S. Herrmann, J. Natural Fibers, 3, 59 (2006).

    Article  Google Scholar 

  16. T. Huber and J. Müssig, Composite Interfaces, 15, 335 (2008).

    Article  CAS  Google Scholar 

  17. A. M. Papadopoulos, Energy and Buildings, 37, 77 (2005).

    Article  Google Scholar 

  18. J. Summerscales, N. P. J. Dissanayake, A. S. Virk, and W. Hall, Compos. Part A-Appl. S., 41, 1329 (2010).

    Article  Google Scholar 

  19. H. Chen, M. Miao, and X. Ding, Compos. Part A-Appl. S., 40, 2013 (2009).

    Article  Google Scholar 

  20. Y. Xue, D. R. Veazie, C. Glinsey, M. F. Horstemeyer, and R. M. Rowell, Compos. Part B-Eng., 38, 152 (2007).

    Article  Google Scholar 

  21. J. Summerscales, N. Dissanayake, A. Virk, and W. Hall, Compos. Part A-Appl. S., 41, 1336 (2010).

    Article  Google Scholar 

  22. L.-R. Bao and A. F. Yee, Compos. Sci. Technol., 62, 2099 (2002).

    Article  CAS  Google Scholar 

  23. V. M. Karbhari and G. Xian, Compos. Part B-Eng., 40, 41 (2009).

    Article  Google Scholar 

  24. J. Crank, “The Mathematics of Diffusion”, 2nd ed., Clarendon Press, Oxford, 1975.

    Google Scholar 

  25. M. Tajvidi, S. K. Najafi, and N. Moteei, J. Appl. Polym. Sci., 99, 2199 (2006).

    Article  CAS  Google Scholar 

  26. R. Kuhad, A. Singh, and K.-E. Eriksson, Biotechnology in the Pulp and Paper Industry, 57, 45 (1997).

    Article  CAS  Google Scholar 

  27. J.-M. Lin and C.-C. M. Ma, Polym. Degrad. Stab., 69, 229 (2000).

    Article  CAS  Google Scholar 

  28. L.-H. Lee, J. Polym. Sci. Part A: General Papers, 3, 859 (1965).

    CAS  Google Scholar 

  29. C. P. Reghunadhan Nair, R. L. Bindu, and K. N. Ninan, Polym. Degrad. Stab., 73, 251 (2001).

    Article  CAS  Google Scholar 

  30. M. A. Abanilla, Y. Li, and V. M. Karbhari, Compos. Part B-Eng., 37, 200 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijun Xian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xian, G., Li, H. et al. Durability study of a ramie-fiber reinforced phenolic composite subjected to water immersion. Fibers Polym 15, 1029–1034 (2014). https://doi.org/10.1007/s12221-014-1029-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1029-7

Keywords

Navigation