Skip to main content
Log in

Properties of modified ethylene terpolymer/poly(lactic acid) blends based films

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to explore an alternative method instead of plasticization for improving the toughness, flexibility and processability of PLA based packaging films, two different kinds of modified polyethylene based elastomers, such as glycidyl methacrylate or maleic anhydride functionalized ethylene-acrylate based elastomers, were melt blended with PLA. Their properties were compared with conventional PEG plasticized PLA. The chemical interaction between end groups of PLA and epoxide or maleic anhydride functional groups of elastomers was shown by FTIR. Scanning electron microscopy showed that up to 20 % PEG loading, one phase morphology was achieved, however beyond this point, a phase separation was observed for plasticized PLA. For PLA/elastomer blends, a two-phase morphology was obtained as a result of immiscible nature of PLA and elastomers. Tensile and dynamic mechanical properties indicated that elastomer based blends were better than plasticized PLA independently from elastomer type. Differential scanning calorimeter (DSC) analysis exhibited that the T g value was remarkably lowered in the plasticized PLA; however, it did not change in the case of elastomers. In terms of oxygen permeability and biodegradability, plasticized PLA was found to be better than elastomer based blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Jacobsen and H. G. Fritz, Polym. Eng. Sci., 39, 1303 (1999).

    Article  CAS  Google Scholar 

  2. Y. Hua, M. Rogunovaa, V. Topolkaraevb, A. Hiltnera, and E. Baer, Polymer, 44, 5701 (2003).

    Article  Google Scholar 

  3. A. Sorrentino, G. Gorrosi, and V. Vittoria, Sci. Technol., 18, 85 (2007).

    Google Scholar 

  4. G. H. Koo and J. Jang, Fiber. Polym., 9, 674 (2008).

    Article  CAS  Google Scholar 

  5. S. Solarski, M. Ferreira, and E. Devaux, Polymer, 46, 11187 (2005).

    Article  CAS  Google Scholar 

  6. L. Petersson, I. Kvien, and K. Oksman, Compos. Sci. Technol., 67, 2535 (2007).

    Article  CAS  Google Scholar 

  7. I. Pillin, N. Montrelay, and Y. Grohens, Polymer, 47, 4676 (2006).

    Article  CAS  Google Scholar 

  8. N. Ljungberg, T. Andersson, and B. Wesslen, J. Appl. Polym. Sci., 88, 3239 (2003).

    Article  CAS  Google Scholar 

  9. E. Foldes and A. Szigeti-Erdei, J. Vinyl Addit. Techn., 3, 220 (1997).

    Article  CAS  Google Scholar 

  10. N. Ljungberg and B. Wesslen, J. Appl. Polym. Sci., 86, 1227 (2002).

    Article  CAS  Google Scholar 

  11. Y. Hu, M. Rogunova, V. Topolkaraev, A. Hiltner, and E. Baer, Polymer, 44, 5701 (2003).

    Article  CAS  Google Scholar 

  12. G. Zhang, J. Zhang, S. Wang, and D. Shen, J. Polym. Sci. Pol. Phys., 41, 23 (2003).

    Article  CAS  Google Scholar 

  13. Z. Jia, J. Tan, C. Han, Y. Yang, and L. Dong, J. Appl. Polym. Sci., 114, 1105 (2009).

    Article  CAS  Google Scholar 

  14. H. Tsuji, A. Mizuno, and Y. Ikada, J. Appl. Polym. Sci., 70, 2259 (1998).

    Article  CAS  Google Scholar 

  15. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, and E. Wintermantel, J. Appl. Polym. Sci., 90, 1731 (2003).

    Article  CAS  Google Scholar 

  16. G. X. Chen, H. S. Kim, E. S. Kim, and J. S. Yoon, Polymer, 46, 11829 (2005).

    Article  CAS  Google Scholar 

  17. T. Yokohara and M. Yamaguchi, Eur. Polym. J., 44, 677 (2008).

    Article  CAS  Google Scholar 

  18. M. Shibata, Y. Inoue, and M. Miyoshi, Polymer, 47, 3557 (2006).

    Article  CAS  Google Scholar 

  19. S. Sun, M. Zhang, H. Zhang, and X. Zhang, J. Appl. Polym. Sci., 122, 2992 (2011).

    Article  CAS  Google Scholar 

  20. A. K. Mohanty, L. T. Drzal, B. P. Rook, and M. Misra, Michigan State University, US Patent, 7256223 B2 (2007).

  21. J. R. Randall, C. M. Ryan, J. Lunt, M. H. Hartman, E. S. Hall, and J. J. Kolstad, US Patent, 6495631 (2002).

  22. L. T. Lima, R. Aurasb, and M. Rubino, Prog. Polym. Sci., 33, 820 (2008).

    Article  Google Scholar 

  23. H. T. Oyama, Polymer, 50, 747 (2009).

    Article  CAS  Google Scholar 

  24. Z. Su, Q. Li, Y. Liu, G. Hu, and C. Wu, Eur. Polym. J., 45, 2428 (2009).

    Article  CAS  Google Scholar 

  25. H. Durgun and G. Bayram, J. Adhes. Sci. Technol., 19, 407 (2005).

    Article  CAS  Google Scholar 

  26. M. Sclavons, M. Laurent, J. Devaux, and V. Carlier, Polymer, 46, 8062 (2005).

    Article  CAS  Google Scholar 

  27. H. T. Chiu and Y. K. Hsiao, J. Polym. Res., 13, 153 (2006).

    Article  CAS  Google Scholar 

  28. G. Ozkoc, G. Bayram, and M. Quaedflieg, J. Appl. Polym. Sci., 107, 3058 (2008).

    Article  CAS  Google Scholar 

  29. P. Pan, B. Zhu, and Y. Inoue, Macromolecules, 40, 9664 (2007).

    Article  CAS  Google Scholar 

  30. S. Gumus, A. Aytac, and G. Ozkoc, J. Appl. Polym. Sci., 123, 2837 (2012).

    Article  CAS  Google Scholar 

  31. M. Sheth, R. A. Kumar, V. Dave, R. A. Gross, and S. P. McCarthy, J. Appl. Polym. Sci., 66, 1495 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guralp Ozkoc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogan, S.K., Gumus, S., Aytac, A. et al. Properties of modified ethylene terpolymer/poly(lactic acid) blends based films. Fibers Polym 14, 1422–1431 (2013). https://doi.org/10.1007/s12221-013-1422-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1422-7

Keywords

Navigation