Skip to main content
Log in

Effects of PLGA nanofibrous scaffolds structure on nerve cell directional proliferation and morphology

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrospinning has been recognized as an efficient technique for the fabrication of neural tissue engineering scaffolds. Many approaches have been developed on material optimization, electrospinning techniques, and physical properties of scaffolds to produce a suitable scaffold for tissue engineering aspects. In this study, structural properties of scaffolds were promoted by controlling the speed of fiber collection without any post-processing. PLGA scaffolds, in two significantly different solution concentrations, were fabricated by the electrospinning process to produce scaffolds with the optimum nerve cell growth in a desired direction. The minimum, intermediate and maximum rate of fiber collection (0.4, 2.4, 4.8 m/s) formed Random, Aligned and Drown-aligned fibers, with various porosities and hydrophilicities. The scaffolds were characterized by fiber diameter, porosity, water contact angle and morphology. Human nerve cells were cultured on fiber substrates for seven days to study the effects of different scaffold structures on cell morphology and proliferation, simultaneously. The results of MTT assay, the morphology of cells and scaffold characterization recommend that the best structure to promote cell direction, morphology and proliferation is accessible in an optimized hydrophilicity and porosity of scaffolds, which was obtained at the collector linear speed of 2.4 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Fisher, A. G. Mikos, and J. D. Bronzino, “Tissue Engineering”, pp.304–317, Taylor & Francis, New York, 2007.

    Book  Google Scholar 

  2. C. V. Blitterswijk, P. Thomsen, A. Lindahl, J. Hubbell, D. Williams, R. Cancedda, J. D. Bruijn, and J. Sohier, “Tissue Engineering”, pp.611–644, Elsevier Academic, Canada, 2008.

    Google Scholar 

  3. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, “An Introduction to Electrospinning and Nanofibers”, pp.275–340, World Scientific, Singapore, 2005.

    Book  Google Scholar 

  4. D. Liang, B. S. Hsiao, and B. Chu, Adv. Drug Delivery Reviews, 59, 1392 (2007).

    Article  CAS  Google Scholar 

  5. H. Cao, T. Liu, and S. Chew, Adv. Drug Delivery Reviews, 61, 1055 (2009).

    Article  CAS  Google Scholar 

  6. J. Zhou, C. Cao, and X. Ma, Int. J. Biological Macromolecules, 45, 504 (2009).

    Article  CAS  Google Scholar 

  7. J. L. Lowery, N. Datta, and G. C. Rutledge, J. Biomaterials., 31, 491 (2010).

    Article  CAS  Google Scholar 

  8. P. Sangsanoh, S. Waleetorncheepsawat, O. Suwantong, P. Wutticharoenmongkol, O. Weeranantanapan, B. Chuenjitbuntaworn, P. Cheepsunthorn, P. Pavasant, and P. Supaphol, Biomacromolecules, 8, 1587 (2007).

    Article  CAS  Google Scholar 

  9. E. Schnell, K. Klinkhammer, S. Balzer, G. Brookc, D. Klee, P. Daltonb, and J. Mey, Biomaterials, 28, 3012 (2007).

    Article  CAS  Google Scholar 

  10. P. Wutticharoenmongkol, P. Pavasant, and P. Supaphol, Biomacromolecules, 8, 2602 (2007).

    Article  CAS  Google Scholar 

  11. Y. Xiong, Y. Zeng, C. Zeng, B. Du, and L. He, J. Biomaterials., 30, 3711 (2009).

    Article  CAS  Google Scholar 

  12. H. Tabesh, Gh. Amoabediny, N. Salehi Nik, M. Heydari, M. Yosefard, S. O. Ranaei Siadat, and K. Mottaghy, J. Neurochemistry Int., 54, 73 (2009).

    Article  CAS  Google Scholar 

  13. A. Krych, G. Rooney, B. Chen, T. Schermerhorn, and S. Ameenuddin, J. Acta Biomaterialia., 5, 2551 (2009).

    Article  CAS  Google Scholar 

  14. M. Moore, J. Friedmanb, E. Lewellync, S. Mantilaa, and S. Krychd, J. Biomaterials., 27, 419 (2006).

    Article  CAS  Google Scholar 

  15. L. Yao, S. Wang, W. Cui, B. Du, and R. Sherlock, J. Acta Biomaterialia., 5, 580 (2009).

    Article  CAS  Google Scholar 

  16. E. Bible, D. Chau, M. Alexander, J. Price, and K. Shakesheff, Biomaterials, 30, 2985 (2009).

    Article  CAS  Google Scholar 

  17. N. Madigan, S. McMahon, T. Brien, M. Yaszemski, and A. Windebank, Respiratory Physiology & Neurobiology, 169, 183 (2009).

    Article  CAS  Google Scholar 

  18. Y. Ikada, “Tissue Engineering Fundamentals and Applications”, pp.303–309, Elsevier Academic, Japan, 2008.

    Google Scholar 

  19. B. Wang, Q. Cai, S. Zhang, X. Yang, and X. Deng, J. Mechanical Behavior. Biomed. Mater., 4, 600 (2011).

    Article  CAS  Google Scholar 

  20. H. B. Wang, M. E. Mullins, J. M. Cregg, C. W. McCarthy, and R. J. Gilbert, Acta Biomaterialia, 6, 2970 (2010).

    Article  CAS  Google Scholar 

  21. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Biomaterials., 26, 2603 (2005).

    Article  CAS  Google Scholar 

  22. S. Patel, K. Kurpinski, R. Quigley, H. Gao, B. S. Hsiao, M. M. Poo, and S. Li, Nano Lett., 7, 2122 (2007).

    Article  CAS  Google Scholar 

  23. D. Gupta, J. Venugopal, M. P. Prabhakaran, V. R. GiriDev, S. Low, A. T. Choon, and S. Ramakrishna, Acta Biomaterialia., 5, 2560 (2009).

    Article  CAS  Google Scholar 

  24. Z. X. Meng, Y. S. Wang, C. Ma, W. Zheng, L. Li, and Y. F. Zheng, Mater. Sci. Eng., 30, 1204 (2010).

    Article  CAS  Google Scholar 

  25. K. T. Shalumon, N. S. Binulal, N. Selvamurugan, S. V. Nair, D. Menon, T. Furuike, H. Tamura, and R. Jayakumar, Carbohyd. Polym., 77, 863 (2009).

    Article  CAS  Google Scholar 

  26. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna, Biomaterials, 29, 4532 (2008).

    Article  CAS  Google Scholar 

  27. J.M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer, 42, 261 (2001).

    Article  CAS  Google Scholar 

  28. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, Polymer, 48, 6913 (2007).

    Article  CAS  Google Scholar 

  29. S. D. Vrieze, T. V. Camp, A. Nelvig, B. Hagstrom, P. Westbroek, and K. D. Clerck, J. Mater. Sci., 44, 1357 (2009).

    Article  Google Scholar 

  30. A. Kilic, F. Oruc, and A. Demir, Text. Res. J., 78, 532 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amani-Tehran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, F., Latifi, M., Amani-Tehran, M. et al. Effects of PLGA nanofibrous scaffolds structure on nerve cell directional proliferation and morphology. Fibers Polym 14, 698–702 (2013). https://doi.org/10.1007/s12221-013-0698-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0698-y

Keywords

Navigation