Skip to main content
Log in

Microstructure and mechanical properties of polyurethane fibrous membrane

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A series of PU fibrous membranes were fabricated by using electrospinning method. The microstructure of the membranes was characterized by field-emission scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectrum. Their mechanical properties were tested by dynamic mechanical thermal analysis and stress-strain behaviors. The solution concentration, the applied voltage and the tip-collector distance had an effect on the crystallinity degree and molecular orientation of PU, the size and distribution of the fiber diameter and the point-bonded structures between the fibers, leading to the change in the microstructure and the mechanical properties of the fibrous membrane. Fibers with a smaller diameter had higher strength but lower ductility. The fibrous membranes indicated the similar stress-strain behaviors, which slopes in the initial stage were low and that in the later stage were high. The initial elastic behavior with the low Young’s modulus were attributed to the network structure of the fibrous membranes and that with the high Young’s modulus was from the electrospun PU fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. K. Lamba, K. A. Woodhouse, and S. L. Cooper, “Polyurethanes in Biomedical Applications”, Boca Raton, CRC Press, 1998.

    Google Scholar 

  2. M. D. Lelah and S. L. Cooper, “Polyurethanes in Medicine”, Boca Raton, CRC Press, 1986.

    Google Scholar 

  3. S. Gogolewski, Colloid. Polym. Sci., 267, 757 (1989).

    Article  CAS  Google Scholar 

  4. S. Gogolewski in “Desk Reference of Functional Polymers. Syntheses and Applications” (R. Arshady Ed.), American Chemical Society, Washington, 1996.

    Google Scholar 

  5. O. S. Yördem, M. Papila, and Y. Z. Menceloglu, Mater. Design., 29, 34 (2008).

    Article  Google Scholar 

  6. S. H. Tana, R. Inaia, M. Kotakib, and S. Ramakrishna, Polymer, 46, 6128 (2005).

    Article  Google Scholar 

  7. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, Polymer, 42, 261 (2001).

    Article  CAS  Google Scholar 

  8. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, Polymer, 48, 6913 (2007).

    Article  CAS  Google Scholar 

  9. M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Polymer, 43, 3303 (2002).

    Article  CAS  Google Scholar 

  10. A. Pedicini and R. J. Farris, Polymer, 44, 6857 (2003).

    Article  CAS  Google Scholar 

  11. D. I. Cha, H. Y. Kim, K. H. Lee, Y. C. Jung, J. W. Cho, and B. C. Chun, J. Appl. Polym. Sci., 96, 460 (2005).

    Article  CAS  Google Scholar 

  12. J. Guan, K. L. Fujimoto, M. S. Sacks, and W. R. Wagner, Biomaterials, 26, 3961 (2005).

    Article  CAS  Google Scholar 

  13. M. G. McKee, T. Park, S. Unal, I. Yilgor, and T. E. Long, Polymer, 46, 2011 (2005).

    Article  CAS  Google Scholar 

  14. H. Zhuo, J. Hu, and S. Chen, Mater. Lett., 62, 2074 (2008).

    Article  Google Scholar 

  15. H. Zhuo, J. Hu, S. Chen, and L. Yeung, J. Appl. Polym. Sci., 109, 406 (2008).

    Article  CAS  Google Scholar 

  16. C. Vaz, S. Van Tuijl, C. V. C. Bouten, and F. P. T. Baaijens, Acta Biomater, 1, 575 (2005).

    Article  CAS  Google Scholar 

  17. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999).

    Article  CAS  Google Scholar 

  18. J. N. Smith, R. C. Flagan, and J. L. Beauchamp, J. Phys. Chem. A, 106, 9957 (2002).

    Article  CAS  Google Scholar 

  19. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  20. S. Y. Gu and J. Ren, Macromol. Mater. Eng., 290, 1097 (2005).

    Article  CAS  Google Scholar 

  21. S. Tripatanasuwan, Z. Zhong, and D. H. Reneker, Polymer, 48, 5742 (2007).

    Article  CAS  Google Scholar 

  22. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhonge, J. Appl. Phys., 87, 4531 (2000).

    Article  CAS  Google Scholar 

  23. A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 89, 3018 (2001).

    Article  CAS  Google Scholar 

  24. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995).

    Article  CAS  Google Scholar 

  25. A. L. Yarin, W. Kataphinan, and D. H. Reneker, J. Appl. Phys., 98, 064501 (2005).

    Article  Google Scholar 

  26. D. H. Reneker and L.Y. Yarin, Polymer, 49, 2387 (2008).

    Article  CAS  Google Scholar 

  27. W. Xu, J. Fang, W. Cui, and J. Huang, Polym. Eng. Sci., 46, 617 (2006).

    Article  CAS  Google Scholar 

  28. J. T. Garrett, R. Xu, J. D. Cho, and J. Runt, Polymer, 44, 2711 (2003).

    Article  CAS  Google Scholar 

  29. X. Kong and J. Zheng, Chin. J. Chem. Phys., 16, 219 (2003).

    CAS  Google Scholar 

  30. P. Wongpanit, Y. Tabata, and R. Rujiravanit, Macromol. Biosci., 7, 1258 (2007).

    Article  CAS  Google Scholar 

  31. D. H. Reneker, W. Kataphinan, and A. Theron, Polymer, 43, 6785 (2002).

    Article  CAS  Google Scholar 

  32. X. Younan, M. W. Joanna, and G. M. D. Alan, Chem. Mater., 7, 443 (1995).

    Article  Google Scholar 

  33. C. T. Lim, E. P. S. Tan, and S. Y. Ng, Appl. Phys. Lett., 92, 1 (2008).

    Google Scholar 

  34. E. P. S. Tan, S. Y. Ng, and C. T. Lim, Biomaterials, 26, 1453 (2005).

    Article  CAS  Google Scholar 

  35. S. M. Hansen, “In Nonwovens: Theory, Process, Performance, and Testing”, pp.85–116, Tappi, Atlanta, 1993.

  36. T. Myrayama, “Dynamic Mechanical Analysis of Polymeric Material”, p.71, Elsevier, Amsterdam, 1978.

    Google Scholar 

  37. H. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, J. Appl. Polym. Sci., 80, 928 (2001).

    Article  CAS  Google Scholar 

  38. F. Giuliano, T. Masuhiro, and B. Silvia, J. Appl. Polym. Sci., 71, 1563 (1999).

    Article  Google Scholar 

  39. J. Chen, J. Zhang, T. Zhu, Z. Zhu, Q. Chen, and X. Xu, Polymer, 42, 1493 (2001).

    Article  CAS  Google Scholar 

  40. C. Lu, P. Chen, J. Li, and Y. Zhang, Polymer, 47, 915 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zikui Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Z., Xu, W., Xu, J. et al. Microstructure and mechanical properties of polyurethane fibrous membrane. Fibers Polym 13, 1239–1248 (2012). https://doi.org/10.1007/s12221-012-1239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-1239-9

Keywords

Navigation