Skip to main content

Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification


Enhancement of the mechanical and vibrational properties of glass/polyester composites was aimed via matrix modification technique. To achieve this, unsaturated polyester was modified by incorporation of oligomeric siloxane in the concentration range of 1–3 wt%. Modified matrix composites reinforced with woven roving glass fabric were compared with untreated glass/polyester in terms of mechanical and interlaminar properties by conducting tensile, flexure, and short-beam shear tests. It was found that after incorporation of 3 % oligomeric siloxane into the polyester matrix, the tensile, flexural, and interlaminar shear strength (ILSS) values of the resulting composite increased by 16, 15, and 75 %, respectively. The increases in ILSS as well as in tensile and flexural properties were considered to be an indication of better fiber/matrix interaction as confirmed by SEM fractography images. Furthermore, the effect of oligomeric siloxane incorporation on the vibrational properties of the composites was investigated by experimental modal testing and the natural frequencies of the composites were found to increase with increasing siloxane concentration.

This is a preview of subscription content, access via your institution.


  1. 1.

    L. M. Zhou, J. K. Kim, and Y. W. Mai, Compos. Sci. Technol., 45, 153 (1992).

    CAS  Article  Google Scholar 

  2. 2.

    L. M. Zhou, J. K. Kim, and Y. W. Mai, Compos. Sci. Technol., 48, 227 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    J. K. Kim and Y. W. Mai, “Engineered Interfaces in Fiber Reinforced Composites”, pp.1–4, Elsevier Science Ltd., Oxford, 1998.

    Book  Google Scholar 

  4. 4.

    Y. Li and Y. W. Mai, J. Adhes., 82, 527 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    W. Gu, H. F. Wu, S. L. Kampe, and G. Q. Lu, Mater. Sci. Eng., A, 277, 237 (2000).

    Article  Google Scholar 

  6. 6.

    S. J. Park and T. J. Kim, J. Appl. Polym. Sci., 80, 1439 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    J. F. Feller and Y. Grohens, Composites Part A, 35, 1 (2004).

    Article  Google Scholar 

  8. 8.

    J. K. Kim, M. L. Sham, and J. Wu, Composites Part A, 32, 607 (2001).

    Article  Google Scholar 

  9. 9.

    S. J. Park, M. H. Kim, J. R. Lee, and S. Choi, J. Colloid. Interf. Sci., 228, 287 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    S. J. Park and J. S. Jin, J. Polym. Sci. Part B: Polym. Phys., 41, 55 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    J. Gassan and A. K. Bledzki, Composites Part A, 28, 1001 (1997).

    Article  Google Scholar 

  12. 12.

    K. W. Allen, Int. J. Adhes. Adhes., 13, 67 (1993).

    CAS  Article  Google Scholar 

  13. 13.

    V. M. Fonseca, V. J. Fernandes, L. H. De Carvalho, and J. R. M. D’Almeida, J. Appl. Polym. Sci., 94, 1209 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    L. Suspene, Y. S. Yang, and J. P. Pascault in “Rubber Toughened Plastics” (C. K. Riew and A. J. Kinloch Eds.), pp.163–188, American Chemical Society, Washington, DC, 1993.

    Chapter  Google Scholar 

  15. 15.

    A. F. Yee, J. Du, and M. D. Thouless in “Polymer Blends: Performance” (D. R. Paul and C. B. Bucknall Eds.), pp.225–267, John Wiley & Sons, New York, 2000.

    Google Scholar 

  16. 16.

    A. B. Cherian, B. T. Abraham, and E. T. Thachil, J. Appl. Polym. Sci., 100, 449 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    M. Sarikanat, J. Reinf. Plast Compos., 29, 807 (2009).

    Article  Google Scholar 

  18. 18.

    V. Cecen, M. Sarikanat, Y. Seki, H. Yildiz, and I. H. Tavman, Polym. Compos., 29, 262 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    V. Cecen, M. Sarikanat, Y. Seki, T. Govsa, H. Yildiz, and I. H. Tavman, J. Appl. Polym. Sci., 102, 4554 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    R. F. Gibson, Compos. Sci. Technol., 60, 2769 (2000).

    Article  Google Scholar 

  21. 21.

    R. Z. Li, L. Ye, and Y. W. Mai, Composites Part A, 28, 73 (1997).

    Article  Google Scholar 

  22. 22.

    K. Sever, M. Sarikanat, Y. Seki, and I. H. Tavman, Polym. Compos., 30, 1251 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    J. N. Reddy, “Mechanics of Laminated Composite Plates: Theory and Analysis”, CRC Press, Florida, 2004.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Erden.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erden, S., Sever, K., Seki, Y. et al. Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification. Fibers Polym 11, 732–737 (2010).

Download citation


  • Composites
  • Matrix modification
  • Polyester
  • Glass fabrics
  • Mechanical
  • Vibrational