Skip to main content
Log in

Hybrid effect in the mechanical properties of jute/rockwool hybrid fibres reinforced phenol formaldehyde composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This research work was concerned with the evaluation of the effect of fibre content on the mechanical properties of composites. Composites were fabricated using jute/phenol formaldehyde (PF), rockwool/PF, and jute/rockwool hybrid PF with varying fibre loadings. Jute and rockwool fibre reinforced PF composites were fabricated with varying fibre loadings (16, 25, 34, 42, 50, and 60 vol.%). The jute/rockwool hybrid PF composites were manufactured at various ratios of jute/rockwool fibres such as 1:0, 0.92:0.08, 0.82:0.18, 0.70:0.30, 0.54:0.46, 0.28:0.72, and 0:1. Total fibre content of the hybrid composites was 42 vol.%. The results showed that tensile strength of the composite increased with increasing fibre content up to 42 vol.% over which it decreased for jute and rockwool fibre reinforced PF composites. Flexural strength of the composite was noted to peak at a fibre loading of 42 vol.% for jute/PF composites, and 34 vol.% for rockwool/PF composites. Impact strength of jute/PF composites increased with increasing fibre loading but that of rockwool/PF composites decreased at higher (>34 vol.%) fibre loadings. Tensile, flexural, and impact strengths of jute/PF composites were found to be higher than those of rockwool/PF composites. The maximum hardness values were obtained 42 vol.% for jute/PF composite, and 34 vol.% for rockwool/PF composite. Further increase in fibre loading adversely affected the hardness of both composites. For jute/rockwool hybrid PF composites, tensile and impact strengths decreased with increasing rockwool fibre loading. The maximum flexural strength of jute/rockwool hybrid PF composites was obtained at a 0.82:0.18 jute/rockwool fibre ratio while maximum hardness was observed at a 0.28:0.72 jute/rockwool fibre ratio. The fractured surfaces of the composites were analysed using scanning electron microscope in order to have an insight into the failure mechanism and fibre/matrix interface adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Gowda, A. C. B. Naidu, and R. Chhaya, Compos. A, 30, 277 (1999).

    Article  Google Scholar 

  2. A. S. Singha and V. K. Thakur, Polym-Plast. Technol. Eng., 48, 48 (2009).

    Article  Google Scholar 

  3. G. S. Chauhan, I. Kaur, B. N. Misra, A. S. Singha, and B. S. Kaith, Polym. Degrad. Stab., 69, 261 (2000).

    Article  CAS  Google Scholar 

  4. T. Yuanjian and D. H. Isaac, Compos. Sci. Technol., 67, 3300 (2007).

    Article  CAS  Google Scholar 

  5. J. Maya, F. Bejoy, T. Sabu, and K. T. Varughese, Polym. Compos., 27, 671 (2006).

    Article  Google Scholar 

  6. A. N. Nakagiato and H. Yano, Appl. Phys. Mater., 78, 547 (2004).

    Article  Google Scholar 

  7. Y. Li, Y. W. Mai, and L. Ye, Compos. Sci. Technol., 60, 2037 (2000).

    Article  CAS  Google Scholar 

  8. L. A. Pothen, S. Thomas, and N. R. Neelakandan, J. Reinf. Plast. Compos., 16, 744 (1997).

    Google Scholar 

  9. L. Y. Mwaaikambo and M. Ansell, J. Appl. Polym. Sci., 272, 108 (1999).

    Google Scholar 

  10. H. D. Rozman, R. N. Kumar, M. R. M. Adlli, and H. A. Abusama, J. Wood. Chem. Technol., 18, 471 (1998).

    Article  CAS  Google Scholar 

  11. D. De, B. Adhikari, and D. De, Polym. Adv. Technol., 18, 72 (2007).

    Article  CAS  Google Scholar 

  12. R. Velmurugan and V. Manikandan, Compos. A, 38, 2216 (2007).

    Article  Google Scholar 

  13. A. N. Shah and S. C. Lakkad, Fibre. Sci. Technol., 15, 41 (1981).

    Article  Google Scholar 

  14. Catalog, Rockwool, Izocam Ltd., Gebze, Turkey.

  15. Q. Mu, C. Wei, and S. Feng, Polym. Compos., 30, 131 (2009).

    Article  CAS  Google Scholar 

  16. B. Singh, M. Gupta, and A. Verma, Compos. Sci. Technol., 60, 581 (2000).

    Article  CAS  Google Scholar 

  17. S. Mishra, A. K. Mohanty, L. T. Drzal, M. Misra, S. Parija, S. K. Nayak, and S. S. Tripaty, Compos. Sci. Technol., 63, 1377 (2003).

    Article  CAS  Google Scholar 

  18. M. S. Sreekala, J. George, M. G. Kumaran, and S. Thomas, Compos. Sci. Technol., 62, 339 (2002).

    Article  CAS  Google Scholar 

  19. Catalog, Cukurova Kimya Ltd., Manisa, Turkey.

  20. Md. R. Rahman, Md. M. Huque, Md. N. Islam, and M. Hasan, Compos. A, 39, 1739 (2008).

    Article  Google Scholar 

  21. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).

    Article  CAS  Google Scholar 

  22. M. Jacob, S. Thomas, and K. T. Varughese, Compos. Sci. Technol., 64, 955 (2004).

    Article  CAS  Google Scholar 

  23. S. Joseph, M. S. Sreekala, Z. Oommen, P. Koshy, and S. Thomas, Compos. Sci. Technol., 62, 1857 (2002).

    Article  CAS  Google Scholar 

  24. S. Joseph, M. S. Sreekala, P. Koshy, and S. Thomas, J. Appl. Polym. Sci., 109, 1439 (2008).

    Article  CAS  Google Scholar 

  25. J. K. Wells and P. W. Beaumont, J. Mater. Sci., 20, 1275 (1985).

    Article  Google Scholar 

  26. J. L. Thomason and M. A. Vlug, Compos. A, 28, 277 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Öztürk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öztürk, B. Hybrid effect in the mechanical properties of jute/rockwool hybrid fibres reinforced phenol formaldehyde composites. Fibers Polym 11, 464–473 (2010). https://doi.org/10.1007/s12221-010-0464-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-0464-3

Keywords

Navigation