Skip to main content
Log in

Harmonic Complex Structures and Special Hermitian Metrics on Products of Sasakian Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

It is well known that the product of two Sasakian manifolds carries a 2-parameter family of Hermitian structures \((J_{a,b},g_{a,b})\). We show in this article that the complex structure \(J_{a,b}\) is harmonic with respect to \(g_{a,b}\), i.e., it is a critical point of the Dirichlet energy functional. Furthermore, we also determine when these Hermitian structures are locally conformally Kähler, balanced, strong Kähler with torsion, Gauduchon or k-Gauduchon (\(k\ge 2\)). Finally, we study the Bismut connection associated to \((J_{a,b}, g_{a,b})\) and we provide formulas for the Bismut-Ricci tensor \({\text {Ric}}^B\) and the Bismut-Ricci form \(\rho ^B\). We show that these tensors vanish if and only if each Sasakian factor is \(\eta \)-Einstein with appropriate constants and we also exhibit some examples fulfilling these conditions, thus providing new examples of Calabi-Yau with torsion manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. The sign in the formula is different from [65] since there \(\omega =g(J\cdot , \cdot )\) but for us \(\omega =g(\cdot ,J\cdot )\).

  2. In fact, it was proved in [25] that the characteristic connection exists for a larger class of almost contact metric manifolds, namely, those which satisfy that \(N_\varphi \) is totally skew-symmetric and \(\xi \) is a Killing vector field.

  3. The notions of positive, negative and null are defined in [14] for general Sasakian manifolds in terms of the basic first Chern class, and they reduce to the stated inequalities for \(\lambda \) in the case of \(\eta \)-Einstein manifolds.

  4. The literature on Sasaki-Einstein metrics is vast, for instance the whole Chapter 11 of [12] is devoted to Sasaki-Einstein metrics (see also [51]).

References

  1. Agricola, I.: The Srní lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 42, 5–84 (2006)

    MathSciNet  Google Scholar 

  2. Andrada, A., Fino, A., Vezzoni, L.: A class of Sasakian \(5\)-manifolds. Transform. Groups 14, 493–512 (2009)

    MathSciNet  Google Scholar 

  3. Andrada, A., Villacampa, R.: Abelian balanced Hermitian structures on Lie algebras. Transform. Groups 21, 903–927 (2016)

    MathSciNet  Google Scholar 

  4. Andrada, A., Villacampa, R.: Bismut connection on Vaisman manifolds. Math. Z. 302, 1091–1126 (2022)

    MathSciNet  Google Scholar 

  5. Apostolov, V., Gualtieri, M.: Generalized Kähler manifolds with split tangent bundle. Commun. Math. Phys. 271, 561–575 (2007)

    Google Scholar 

  6. Barbaro, G.: On the curvature of the Bismut connection: Bismut–Yamabe problem and Calabi–Yau with torsion metrics. J. Geom. Anal. 33, 153 (2023)

    MathSciNet  Google Scholar 

  7. Belgun, F.: On the metric structure of some non-Kähler complex threefolds. Preprint (2012). arXiv:1208.4021

  8. Bismut, J.-M.: A local index theorem for non-Kähler manifolds. Math. Ann. 284, 681–699 (1989)

    MathSciNet  Google Scholar 

  9. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, vol. 203, 2nd edn. Birkhäuser, Boston (2010)

    Google Scholar 

  10. Boothby, W.M., Wang, H.C.: On contact manifolds. Ann. Math. (2) 68, 721–734 (1958)

    MathSciNet  Google Scholar 

  11. Bor, G., Hernández-Lamoneda, L., Salvai, M.: Orthogonal almost-complex structures of minimal energy. Geom. Dedicata 127, 75–85 (2007)

    MathSciNet  Google Scholar 

  12. Boyer, C., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    Google Scholar 

  13. Boyer, C., Galicki, K., Kollár, J.: Einstein metrics on spheres. Ann. Math. (2) 162, 557–580 (2005)

    MathSciNet  Google Scholar 

  14. Boyer, C., Galicki, K., Matzeu, P.: On \(\eta \)-Einstein Sasakian geometry. Commun. Math. Phys. 262, 177–208 (2006)

    MathSciNet  Google Scholar 

  15. Calabi, E., Eckmann, B.: A class of compact complex manifolds which are not algebraic. Ann. Math. (2) 58, 494–500 (1953)

    MathSciNet  Google Scholar 

  16. Cavalcanti, G.: Hodge theory of SKT manifolds. Adv. Math. 374, 107270 (2020)

    MathSciNet  Google Scholar 

  17. Cleyton, R., Moroianu, A., Semmelmann, U.: Metric connections with parallel skew-symmetric torsion. Adv. Math. 378, 107519 (2021)

    MathSciNet  Google Scholar 

  18. Davidov, J., Mushkarov, O.: Harmonic almost-complex structures on twistor spaces. Isr. J. Math. 131, 319–332 (2002)

    MathSciNet  Google Scholar 

  19. Davidov, J., Mushkarov, O.: Harmonicity of the Atiyah–Hitchin–Singer and Eells–Salamon almost complex structures. Ann. Mat. Pura Appl. 197, 185–209 (2018)

    MathSciNet  Google Scholar 

  20. Eells, J., Sampson, J.H.: Harmonic mapping Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    MathSciNet  Google Scholar 

  21. Fino, A., Grantcharov, G.: Properties of manifolds with skew-symmetric torsion and special holonomy. Adv. Math. 189, 439–450 (2004)

    MathSciNet  Google Scholar 

  22. Fino, A., Parton, M., Salamon, S.: Families of strong KT structures in six dimensions. Comment. Math. Helv. 79, 317–340 (2004)

    MathSciNet  Google Scholar 

  23. Fino, A., Tardini, N.: Some remarks on Hermitian manifolds satisfying Kähler-like conditions. Math. Z. 298, 49–68 (2021)

    MathSciNet  Google Scholar 

  24. Fino, A., Ugarte, L.: On generalized Gauduchon metrics. Proc. Edinb. Math. Soc. 56, 733–753 (2013)

    MathSciNet  Google Scholar 

  25. Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6, 303–335 (2002)

    MathSciNet  Google Scholar 

  26. Fu, J., Wang, Z., Wu, D.: Semilinear equations, the \(\gamma _k\) function, and generalized Gauduchon metrics. J. Eur. Math. Soc. 15, 659–680 (2013)

    MathSciNet  Google Scholar 

  27. García-Fernández, M., Streets, J.: Generalized Ricci Flow. AMS University Lecture Series 76 (2021)

  28. Gates, S.J., Hull, C.M., Roček, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B 248, 157–186 (1984)

    MathSciNet  Google Scholar 

  29. Gauduchon, P.: Le théorême de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A 285, 387–390 (1977)

    MathSciNet  Google Scholar 

  30. Geiges, H.: Normal contact structures on \(3\)-manifolds. Tohoku Math. J. 49, 415–422 (1997)

    MathSciNet  Google Scholar 

  31. González-Dávila, J.C., Martín Cabrera, F.: Harmonic \(G\)-structures. Math. Proc. Camb. Phil. Soc. 146, 435–459 (2009)

    MathSciNet  Google Scholar 

  32. Grantcharov, D., Grantcharov, G., Poon, Y.S.: Calabi-Yau connections with torsion on toric bundles. J. Differ. Geom. 78, 13–32 (2008)

    MathSciNet  Google Scholar 

  33. Grantcharov, G.: Geometry of compact complex homogeneous spaces with vanishing first Chern class. Adv. Math. 226, 3136–3159 (2011)

    MathSciNet  Google Scholar 

  34. Gray, A.: Some examples of almost Hermitian manifolds. Ill. J. Math. 10, 353–366 (1966)

    MathSciNet  Google Scholar 

  35. Gray, A., Hervella, L.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123, 35–58 (1980)

    MathSciNet  Google Scholar 

  36. Gualtieri, M.: Generalized complex geometry. Ann. Math. (2) 174, 75–123 (2011)

    MathSciNet  Google Scholar 

  37. He, W., Li, B.: The harmonic heat flow of almost complex structures. Trans. Am. Math. Soc. 374, 6179–6199 (2021)

    MathSciNet  Google Scholar 

  38. Hull, C.M.: Compactification of the heterotic superstrings. Phys. Lett. B 178, 357–364 (1986)

    MathSciNet  Google Scholar 

  39. Ivanov, S., Papadopoulos, G.: Vanishing theorems and string backgrounds. Classical Quantum Gravity 18, 1089–1110 (2001)

    MathSciNet  Google Scholar 

  40. Jost, J., Yau, S.-T., A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170, 221–254 (1993). Correction, ibid. 173, 307 (1994)

  41. Kuo, Y.-Y.: On almost contact \(3\)-structure. Tôhoku Math. J. 22, 325–332 (1970)

    MathSciNet  Google Scholar 

  42. Lee, J., Park, J., Sekigawa, K.: Hermitian structures on the product of Sasakian manifolds. Geom. Dedicata 161, 399–408 (2012)

    MathSciNet  Google Scholar 

  43. Liu, Y., Sano, T., Tasin, L.: Infinitely many families of Sasaki-Einstein metrics on spheres, to appear in J. Differential Geom. Preprint (2022). arXiv:2203.08468

  44. Loubeau, E.: Harmonic geometric structures: the general theory and the cases of almost complex and almost contact structures. Note Mat. 37(suppl. 1), 103–118 (2017)

    MathSciNet  Google Scholar 

  45. Loubeau, E., Sá Earp, H.: Harmonic flow of geometric structures. Ann. Glob. Anal. Geom. 64, 23 (2023)

    MathSciNet  Google Scholar 

  46. Matsuo, K.: Astheno-Kähler structures on Calabi–Eckmann manifolds. Colloq. Math. 115, 33–39 (2009)

    MathSciNet  Google Scholar 

  47. Michelsohn, M.: On the existence of special metrics in complex geometry. Acta Math. 143, 261–295 (1983)

    MathSciNet  Google Scholar 

  48. Morimoto, A.: On normal almost contact structures. J. Math. Soc. Jpn. 15, 420–436 (1963)

    MathSciNet  Google Scholar 

  49. Podestà, F., Raffero, A.: Bismut Ricci flat manifolds with symmetries. Proc. R. Soc. Edinb. Sect. A 153, 1371–1390 (2023)

    MathSciNet  Google Scholar 

  50. Podestà, F., Raffero, A.: Infinite families of homogeneous Bismut Ricci flat manifolds. Commun. Contemp. Math. 26, 2250075 (2024)

    MathSciNet  Google Scholar 

  51. Sparks, J.: Sasaki-Einstein Manifolds. In: Conan Leung, N., Yau, S.-T. (eds.) Geometry of Special Holonomy and Related Topics. International Press of Boston, Inc, Boston (2011)

    Google Scholar 

  52. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 2010, 3101–3133 (2010)

    MathSciNet  Google Scholar 

  53. Streets, J., Tian, G.: Regularity theory for pluriclosed flow. C. R. Math. Acad. Sci. Paris 349, 1–4 (2011)

    MathSciNet  Google Scholar 

  54. Strominger, A.: Superstrings with torsion. Nuclear Phys. B 274, 253–284 (1986)

    MathSciNet  Google Scholar 

  55. Tanno, S.: The topology of contact Riemannian manifolds. Ill. J. Math. 12, 700–717 (1968)

    MathSciNet  Google Scholar 

  56. Tanno, S.: Geodesic flows on \(C_L\)-manifolds and Einstein metrics on \(S^3 \times S^2\). In: Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), Amsterdam: North-Holland, pp. 283–292 (1979)

  57. Tsukada, K.: Eigenvalues of the Laplacian on Calabi–Eckmann manifolds. J. Math. Soc. Jpn. 33, 673–691 (1981)

    MathSciNet  Google Scholar 

  58. Udrişte, C.: Structures presque coquaternioniennes. Bull. Math. Soc. Sci. Math. Roum. 13(61), 487–507 (1969)

    MathSciNet  Google Scholar 

  59. Ugarte, L.: Hermitian structures on six-dimensional nilmanifolds. Transform. Groups 12, 175–202 (2007)

    MathSciNet  Google Scholar 

  60. Ugarte, L., Villacampa, R.: Balanced Hermitian geometry on 6-dimensional nilmanifolds. Forum Math. 27, 1025–1070 (2015)

    MathSciNet  Google Scholar 

  61. Vaisman, I.: On locally conformal almost Kähler manifolds. Isr. J. Math. 24, 338–351 (1976)

    Google Scholar 

  62. Wang, Q., Yang, B., Zheng, F.: On Bismut flat manifolds. Trans. Am. Math. Soc. 373, 5747–5772 (2020)

    MathSciNet  Google Scholar 

  63. Watson, B.: New examples of strictly almost Kähler manifolds. Proc. Am. Math. Soc. 88, 541–544 (1983)

    Google Scholar 

  64. Wood, C.M.: Instability of the nearly-Kähler six-sphere. J. Reine Angew. Math. 439, 205–212 (1993)

    MathSciNet  Google Scholar 

  65. Wood, C.M.: Harmonic almost-complex structures. Compos. Math. 99, 183–212 (1995)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Romina Arroyo, Jorge Lauret, Henrique Sá Earp, Mauro Subils, Jeffrey Streets, and an anonymous referee for their useful comments and suggestions. The authors would also like to thank the hospitality of the Instituto de Matemática, Estatística e Computação Científica at UNICAMP (Brazil), where they were introduced to the theory of harmonic almost complex structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Tolcachier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by CONICET, SECyT-UNC and FONCyT (Argentina) and the MATHAMSUD Regional Program 21-MATH-06.

Appendix

Appendix

As mentioned before, we provide here a proof of Proposition 4.1, for the sake of completeness.

Proof of Proposition 4.1

Let \(\{e_1,\ldots ,e_{2n}\}\) be an orthonormal local frame satisfying \(Je_{2i-1}=e_{2i}\) for \(1\le i\le n\). Using this frame, we compute by definition both sides of the equality we want to prove. For \(X\in \mathfrak {X}(M)\), using that \(J(\nabla _U J)=-(\nabla _U J)J\) for all \(U\in \mathfrak {X}(M)\), we have

$$\begin{aligned}{}[J,\nabla ^*\nabla J](X)&=\sum _{i=1}^{2n} \underbrace{J(\nabla _{e_i} (\nabla _{e_i} J))(X)}_{\textcircled {1}}-\underbrace{(\nabla _{e_i} (\nabla _{e_i} J))(JX)}_{\textcircled {2}}-2J(\nabla _{\nabla _{e_i} e_i} J)(X), \end{aligned}$$

Recall that the integrability of J is equivalent to \(\nabla _{JU} J=J(\nabla _U J)\) for any \(U\in \mathfrak {X}(M)\). Using this fact when writing \((\nabla _{e_i} J)=-(\nabla _{J^2 e_i} J)\), we obtain

$$\begin{aligned} \textcircled {1}&=-J(\nabla _{e_i} J(\nabla _{Je_i} J))(X)\\&=-J\nabla _{e_i} (J(\nabla _{Je_i} J)X)-(\nabla _{Je_i} J)(\nabla _{e_i} X)\\&=-J\nabla _{e_i} J\nabla _{Je_i} JX-J\nabla _{e_i} \nabla _{Je_i} X-\nabla _{Je_i} J\nabla _{e_i} X+J\nabla _{Je_i} \nabla _{e_i} X\\&=-J\nabla _{e_i} J\nabla _{Je_i} JX-\nabla _{Je_i} J\nabla _{e_i} X-J R(e_i,Je_i)X-J\nabla _{[e_i,Je_i]} X, \end{aligned}$$
$$\begin{aligned} \textcircled {2}&=-(\nabla _{e_i} J(\nabla _{Je_i} J))(JX)\\&=-\nabla _{e_i} (J(\nabla _{Je_i} J)(JX))+J(\nabla _{Je_i} J)(\nabla _{e_i} JX)\\&=\nabla _{e_i} J \nabla _{Je_i} X-\nabla _{e_i} \nabla _{Je_i} JX+J\nabla _{Je_i} J\nabla _{e_i} JX+\nabla _{Je_i} \nabla _{e_i} JX\\&=\nabla _{e_i} J \nabla _{Je_i} X+J\nabla _{Je_i} J\nabla _{e_i} JX-R(e_i,Je_i)JX-\nabla _{[e_i,Je_i]} JX. \end{aligned}$$

Hence,

$$\begin{aligned}{}[J,\nabla ^* \nabla J](X)&=-2[J,P](X)+\sum _{i=1}^{2n} (\nabla _{[e_i,Je_i]} J)X-2\sum _{i=1}^{2n} J(\nabla _{\nabla _{e_i} e_i} J)(X)\\&\quad -\sum _{i=1}^{2n} (J\nabla _{e_i} J\nabla _{Je_i} JX+\nabla _{Je_i} J\nabla _{e_i} X+\nabla _{e_i} J \nabla _{Je_i} X+J\nabla _{Je_i} J\nabla _{e_i} JX).\end{aligned}$$

Note that in the chosen J-adapted frame \(\{e_i\}\) the last sum equals zero, since replacing \(e_i\) by \(Je_i\) gives the same terms with opposite sign. Thus,

$$\begin{aligned}{}[J,\nabla ^* \nabla J](X) =-2[J,P](X)+\sum _{i=1}^{2n} (\nabla _{[e_i,Je_i]} J)X-2\sum _{i=1}^{2n} J(\nabla _{\nabla _{e_i} e_i} J)(X). \end{aligned}$$
(7.1)

Now, using (4.2) with our J-adapted frame, we get

$$\begin{aligned} 2(\nabla _{\delta J} J)(X)&=2\sum _{i=1}^{2n} (\nabla _{(\nabla _{e_i} J)e_i} J)(X)\\&=2\sum _{i=1}^{2n} (\nabla _{\nabla _{e_i} Je_i} J)(X)-2\sum _{i=1}^{2n} (\nabla _{J \nabla _{e_i} e_i} J)(X)\\&=\sum _{i=1}^{2n} (\nabla _{\nabla _{e_i} Je_i} J+\nabla _{\nabla _{Je_i} e_i} J)(X)+\sum _{i=1}^{2n} (\nabla _{[e_i, Je_i]} J)(X)\\&\quad -2\sum _{i=1}^{2n} J(\nabla _{ \nabla _{e_i} e_i} J)(X). \end{aligned}$$

Replacing \(e_i\) by \(Je_i\) in the first sum we obtain the same terms with opposite sign, and thus this sum equals zero. Therefore,

$$\begin{aligned} 2(\nabla _{\delta J} J)(X) = \sum _{i=1}^{2n} (\nabla _{[e_i, Je_i]} J)(X)-2\sum _{i=1}^{2n} J(\nabla _{ \nabla _{e_i} e_i} J)(X). \end{aligned}$$
(7.2)

Comparing (7.1) with (7.2) we obtain \([J,\nabla ^* \nabla J]=2\nabla _{\delta J}J-2[J,P]\), as we wanted to prove. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrada, A., Tolcachier, A. Harmonic Complex Structures and Special Hermitian Metrics on Products of Sasakian Manifolds. J Geom Anal 34, 181 (2024). https://doi.org/10.1007/s12220-024-01620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01620-x

Keywords

Mathematics Subject Classification

Navigation