Skip to main content
Log in

\((\varepsilon ,\delta )\)–Quasi-Negative Curvature and Positivity of the Canonical Bundle

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

A recent theorem of Diverio–Trapani and Wu–Yau asserts that a compact Kähler manifold with a Kähler metric of quasi-negative holomorphic sectional curvature is projective and canonically polarized. This confirms a long-standing conjecture of Yau. We consider the notion of \((\varepsilon ,\delta )\)–quasi-negativity, generalizing quasi-negativity, and obtain gap-type theorems for \(\int _X c_1(K_X)^n>0\) in terms of the real bisectional curvature and weighted orthogonal Ricci curvature. These theorems are also a generalization of that results by Zhang-Zheng (arXiv:2010.01314v4 ) and Chu-Lee-Tam (Trans Am Math Soc 375(11):7925–7944, 2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data openly available in a public repository.

References

  1. Aubin, T.: Équations du type Monge–Ampère sur les varietés kählériennes compactes. C. Rendus Acad. Sci. Paris 283, 119–121 (1976)

    MathSciNet  Google Scholar 

  2. Birkar, C., Cascini, P., Hacon, C., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  Google Scholar 

  3. Broder, K.: The Schwarz lemma in Kähler and non-Kähler geometry, to appear in the Asian. J. Math. 27(1), 121–134 (2023)

    MathSciNet  Google Scholar 

  4. Broder, K.: The Schwarz lemma: an Odyssey. Rocky Mt. J. Math. 52(4), 1141–1155 (2022)

    Article  MathSciNet  Google Scholar 

  5. Broder, K.: Remarks on the Wu–Yau theorem. arXiv:2306.06509

  6. Broder, K., Stanfield, J.: On the Gauduchon Curvature of Hermitian Manifolds. Int. J. Math. https://doi.org/10.1142/S0129167X23500398

  7. Broder, K., Tang, K.: On the weighted orthogonal Ricci curvature. J. Geom. Phys. (2023). https://doi.org/10.1016/j.geomphys.2023.104783

    Article  MathSciNet  Google Scholar 

  8. Broder, K., Tang, K.: On the altered holomorphic curvatures of Hermitian manifolds. arXiv:2201.03666

  9. Campana, F.: Twistor spaces and nonhyperbolicity of certain symplectic Kähler manifolds. In: Complex analysis (Wuppertal 1991), Aspects Math., E17, 64–69. Friedr. Veiweg, Braunschweig (1991)

  10. Cheltsov, I., Shramov, C.: Log canonical thresholds of smooth Fano threefolds (Russian), with an appendix by Jean-Pierre Demailly, Uspekhi Mat. Nauk 63, 73–180 (2008); translation in Russian Math. Surveys 63, 859–958 (2008)

  11. Chu, J.C., Lee, M.C., Tam, L.-F.: Kähler manifolds and mixed curvature. Trans. Am. Math. Soc. 375(11), 7925–7944 (2022)

    Article  Google Scholar 

  12. Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  13. Demailly, J.-P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. (4) 34, 525–556 (2001)

    Article  MathSciNet  Google Scholar 

  14. Demailly, J.-P., Paun, M.: Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2) 159(3), 1247–1274 (2004)

    Article  MathSciNet  Google Scholar 

  15. Diverio, S., Trapani, S.: Quasi-negative holomorphic sectional curvature and positivity of the canonical bundle. J. Differ. Geom. 111, 303–314 (2019)

    MathSciNet  Google Scholar 

  16. Heier, G., Lu, S., Wong, B.: On the canonical line bundle and negative holomorphic sectional curvature. Math. Res. Lett. 17(06), 1101–1110 (2010)

    Article  MathSciNet  Google Scholar 

  17. Lee, M. C., Streets, J.: Complex manifolds with negative curvature operator. Int. Math. Res. Not. 2021(24), 18520–18528 (2021)

  18. Li, C., Ni, L., Zhu, X.: An application of a \(C^2\)-estimate for a complex Monge–Ampère equation. Int J. Math. 32(12), 2140007 (2021)

    Article  Google Scholar 

  19. Moishezon, B.G.: On \(n\)-dimensional compact complex manifolds having \(n\) algebraically independent meromorphic functions. I. Izv. Akad. Nauk SSSR Ser. Mat. 30, 133–174 (1966)

    MathSciNet  Google Scholar 

  20. Ni, L.: Liouville theorems and a Schwarz Lemma for holomorphic mappings between Kähler manifolds. Commun. Pure Appl. Math 74, 1100–1126 (2021)

    Article  Google Scholar 

  21. Royden, H.L.: The Ahlfors–Schwarz lemma in several complex variables. Comment. Math. Helvetici 55, 547–558 (1980)

    Article  MathSciNet  Google Scholar 

  22. Siu, Y.-T.: A vanishing theorem for semipositive line bundles over non-Kähler manifolds. J. Differ. Geom. 19, 431–452 (1984)

    Google Scholar 

  23. Tang, K.: On almost nonpositive \(k\)-Ricci curvature. J. Geom. Anal. 32(12), 306 (2022)

    Article  MathSciNet  Google Scholar 

  24. Tian, G.: On Kähler–Einstein metrics on certain Kähler manifolds with \(C_1(M) > 0\). Invent. Math. 89(2), 225–246 (1987)

    Article  MathSciNet  Google Scholar 

  25. Tosatti, V., Yang, X.-K.: An extension of a theorem of Wu–Yau. J. Differ. Geom. 107(3), 573–579 (2017)

    MathSciNet  Google Scholar 

  26. Wong, B.: The uniformization of compact Kähler surfaces of negative curvature. J. Differ. Geom. 16(3), 407–420 (1981)

    MathSciNet  Google Scholar 

  27. Wu, D., Yau, S.-T.: Negative holomorphic sectional curvature and positive canonical bundle. Invent. Math. 204(2), 595–604 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wu, D., Yau, S.-T.: A remark on our paper Negative holomorphic curvature and positive canonical bundle. Commun. Anal. Geom. 24, 901–912 (2016)

    Article  Google Scholar 

  29. Yang, B., Zheng, F.: On curvature tensors of Hermitian manifolds. Commun. Anal. Geom. 26(5), 1195–1222 (2018)

    Article  MathSciNet  Google Scholar 

  30. Yang, X., Zheng, F.: On the real bisectional curvature for Hermitian manifolds. Trans. Am. Math. Soc. 371(4), 2703–2718 (2019)

    Article  MathSciNet  Google Scholar 

  31. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  Google Scholar 

  32. Zhang, Y.: Integral inequalities for holomorphic maps and applications. Trans. Am. Math. Soc. 374(4), 2341–2358 (2021)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Y.: Holomorphic sectional curvature, nefness and Miyaoka–Yau type inequality. Math. Z. 298(3–4), 953–974 (2021)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Y., Zheng, T.: On almost quasi-negative holomorphic sectional curvature. arXiv:2010.01314v4

Download references

Acknowledgements

The first named author would like to thank his former Ph.D. advisors Ben Andrews and Gang Tian for their support and encouragement. He would also like to thank Simone Diverio, Jeffrey Streets, Finnur Lárusson, Ramiro Lafuente, and James Stanfield for many valuable discussions and communications. The authors would like to thank Yashan Zhang for his support, and for many invaluable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first named author was supported by the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (project DP220102530). The second named author was supported by National Natural Science Foundation of China (Grant No.12001490).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broder, K., Tang, K. \((\varepsilon ,\delta )\)–Quasi-Negative Curvature and Positivity of the Canonical Bundle. J Geom Anal 34, 180 (2024). https://doi.org/10.1007/s12220-024-01619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01619-4

Keywords

Navigation