Skip to main content
Log in

Negative holomorphic curvature and positive canonical bundle

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In this note we show that if a projective manifold admits a Kähler metric with negative holomorphic sectional curvature then the canonical bundle of the manifold is ample. This confirms a conjecture of the second author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campana, F.: Twistor spaces and nonhyperbolicity of certain symplectic Kähler manifolds, Complex analysis (Wuppertal, 1991), 64–69, Aspects Math., E17, Vieweg, Braunschweig, 1991

  2. Debarre, O.: Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  3. Greene, R.E., Wu, H.: Function theory on manifolds which possess a pole. Lecture Notes in Mathematics, vol. 699. Springer, Berlin (1979)

  4. Heier, G., Lu, S., Wong, B.: On the canonical line bundle and negative holomorphic sectional curvature. Math. Res. Lett. 17(6), 1101–1110 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heier, G., Lu, S., Wong, B.: Kähler manifolds of semi-negative holomorphic sectional curvature, arXiv:1403.4210, J. Diff. Geom

  6. Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79, 567–588 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kobayashi, S.: Hyperbolic complex spaces. Springer, New York (1998)

    Book  MATH  Google Scholar 

  8. Kollár, J., Mori, S.: Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge (1998)

  9. Lang, S.: Hyperbolic and Diophantine analysis. Bull. Amer. Math. Soc. (N.S.) 14(2), 159–205 (1986)

  10. Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 48. Springer-Verlag, Berlin (2004)

  11. Peternell, T.: Calabi-Yau manifolds and a conjecture of Kobayashi. Math. Z. 207, 305–318 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Royden, H.L.: The Ahlfors-Schwarz lemma in several complex variables. Comment. Math. Helv. 55(4), 547–558 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wong, B.: The uniformization of compact Kähler surfaces of negative curvature. J. Diff. Geom. 16, 407–420 (1981)

    MATH  Google Scholar 

  14. Wong, P.-M., Wu, D., Yau, S.-T.: Picard number, holomorphic sectional curvature, and ampleness. Proc. Amer. Math. Soc. 140(2), 621–626 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, D., Yau, S.-T., Zheng, F.: A degenerate Monge-Ampère equation and the boundary classes of Kähler cones. Math. Res. Lett. 16(2), 365–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, H.: A remark on holomorphic sectional curvature. Indiana Univ. Math. J. 22, 1103–1108 (1972/73)

  17. Yau, S.-T.: A general Schwarz lemma for Kähler manifolds. Amer. J. Math. 100(1), 197–203 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  19. Zheng, F.: Complex Differential Geometry, AMS/IP Studies in Advanced Mathematics, 18. RI; International Press, Boston, MA, American Mathematical Society, Providence (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damin Wu.

Additional information

The first author was partially supported by the NSF Grant DMS-1308837. The second author was partially supported by the NSF Grant DMS-0804454.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Yau, ST. Negative holomorphic curvature and positive canonical bundle. Invent. math. 204, 595–604 (2016). https://doi.org/10.1007/s00222-015-0621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0621-9

Keywords

Navigation